nanDECK Manual

by Andrea “Nand” Nini

Program version 1.27.1 — 2022-12-15

Index

YN AL A T3 YRR 7
Lo T (o] g oTo] 4] = LA T F 11
GEELINE STATTEA.evviriie ittt b bbb e b s e b e e R e R AR e e bt e b e et e e e st R e R e e b e e be e e e e r e E e n e r e 13
RANGES ...ttt bbbt R R R e R R R R R e R R Rt e e r e r e 17
(0] (0] ¢ TR TR 19
LADEIS GNU SEOUEICES. ... vttt ettt b et bbbt bbb b bt e bbbt e bt b e h £ bt e b e st ekt b e b e e b e b e b e e b e b e bt e b e et e bt et b e bt b 22
I o= I 0010 £) F 3SR 28
AAUTOLABEL ..ottt ettt e et e st e et e e st e e st e e s bt esateesateesateesateesateesateesateesabeesebesssteesteessteesneesres 28
F IO ¥ AN 1N L] 28
O A TR 28
O NS S I 211 29
(@10]\ N SR 29
(@10]\ [0 N 1 SR 29
COOFRANME ... ettt et e et e et e e st e st e e st e e st esatee s e teesateesateesateesateesateesateesatessebeesabeesssaesenessans 29
COOFRAMES. ...t ettt et e et e e bt e st e e st e e st e e sateesateesateesateesateesateesaseesateesateesabesssbeesabeesssaesenessans 29
(01010][00 1N TR 30
DIRFILES ... oottt ettt et e et e et e et e st e et e s et e eaeeeseeeeeaeeeseaeesaseeseeeesaseesaaeeasteeseeeesaseeseeeeseseesaneeseseesaenenenes 30
ENV IRONMENT L. oottt e e e et e et e ettt e et et e ettt e et et e eaeeeaeeeeeaeeeseeeeaseeeaaeeeseseesaeeeseteenseeesseeesaeesseeesereeesreeenneesares 31
BNV AL .ottt ettt et e e e te e ——e et e e —te e ——e e —eeaate i —eer—tea—teroeea—ees tei—te s tereteeaiaeeiteeneraenres 31
[2 Y 1| 2R 31
I SRR 32
GRADIENTSEQ ..ottt te sttt e sttt e s beeteese et e st e besbea2easeese e s e e s e teabe et e eseeReeee st e testeateeReenseeenbeseesrestenreanens 34
L1010] SRR 34
IIM A GECREATE ...ttt ettt ettt sttt e s bt e e s bt e e at e e s a b e e sab e e sh b e e sabeesh b e e s abe s s s bessabesssbaesabesssbassabesssbassabesssbassbesebeas 34
NN R 34
IO ettt e e et e et e ettt e et e et e e e et ee et e e e eeeetteaaeeeeteaeeeeeteaaree s teaateeateaa et aateeaaee e tesareeeaeenaees 34
JOIN ettt e —e e —e e —e et teee—eaeteee—eeateea—eeattea—eeateea—eeitte et e it e e —eea e enreeareenereerres 35
JOINIF et ettt ettt et e et e et e et e et ee et e e e et e e ete e e et e e ettt eetee e ettt e e —e e ettt e ettt eatte e —ee i tee et e a e en e e a e enaeerres 35
LABELRANGE ... oottt ettt et e e et et e et e et e et e ettt e et e e e ea et e eaeeese st e eaeeeseteeeaeeesteeesaaeeseteeareeeareeeaeeeares 35
LABELSTRING ...ttt ettt et e e et e et et e e ettt e et et e eat e e et e e eaeeeseeeeeseeesaeeeseseesaeeeseteesseeesseeesaeeeseeasaneeesreeenneeeares 36
[N 2] U] TSR 36
[N[I TR 37
Y1] = ST 37
[BT AV TR 37
[BT o AN] SRR 37
[2] 1 O TR 37
RAINGEADD ...ttt e e e et e et et e et e et e et e e e e et e et e et e e e e e e e e e e r e e et e raear e e aas 38
RAINGE C OUNT ettt ettt e ettt e s et ee e s bt e e e seatteesaaaeeessaseeessasetsesassaeessasseeesseeeessabasessstbesesaseaeesssbeaessreeeeins 38
RAINGEINS ..ottt e et e e e et e et e et e et e e e e e e e e e e et e st e et e e e e e e e e eee e st e neneneenenennes 38
RAINGELABEL ...ttt e e et e e e et et e et e et e et e e e e et e e e e et e et e et e e e e e e e e e e et e eaeeenaes 38
RANGEMERGE. ...ttt e e e e et e e e e et e et e et e e e e et e et e et e e e e et e e e e e e e aeeennes 39
RAINGEMUL ...t e e e e et et e et e et e et e e e e ea et e e e e et e e e e et e eeeeeeere e e e e e reeeaeeeereeeaeeeanes 39
RANGEREM ..ottt ettt ettt et et et e bt e e e bt e e e bt e e bt e e sbee e bt s e sbee s bt e e ebee e bt s e ebes e st e e ebesesbesesbasesbeessbesesbasanbesebeas 39
RAINGESUB ...ttt ettt ettt sttt e et e s bt e e ettt e shte e ebte e sheeesbteesheeesbteesbeeeebbeesheeebteesbeeesbbeesaeeesbbeesbeeesbbeesbenesreas 39
R N TR 40
] o N O TR 40
(RO 10111 5 PR OTR 40
SAVELABEL ...ttt ettt et ettt ettt et e e ettt e et e e e e h e e e b teeehaeeahtseehaeebte e e aeeheseehaeeahte e e eeeirte e s teearteeseneiraeaas 40
o | =1 1Y TR 40
ST RINGLABEL ... oottt e e e e et e et e et e et e et e ee e e et e et e e e e et eeeeeeeseesne e st ennee et eeneneeneeeneneenneens 41
STRINGSUB ...ttt e e et et e et e et e et e et e eme e e et e et e e e eanee e e e eeneeeeneeaneeeneeennreeneneenneeneneenneens 41
A GERAME ..ot e et e et e et e e et e et e e e e e e e e et e e e e et e et e r e e et e e e aaeaaas 41
TOKENIZE ..o et e et e et e e et e ettt e et e e e et e e e e e et e e e e em e e ameeeeneeeeeeeeane e e e e e et enre e et eneeennes 41
TOKENIZESEQ ... oottt ettt ettt ettt ettt et e st e e beebeebeese et e be st e ebesbeebeese e st e b e abesbesbeebeebeesbeseentesbesbesbesbeeraenes 42
RTINS A 1 RO 42
[10 [T U 43
[10 TS 1] 01 0] SRR 47
FRAIMEBAR ...ttt ettt ettt ettt ettt et e e et e e e bt e e eae e e ehe e e bt e e ehee e bt e e ebeeeabeeeebeeesbeseebeseabeseabesesbesesbesesbeeebesesbasaabesesreas 47
FRAIMEBEZIER..... oo oottt ettt ettt ettt eh et ettt e ettt e bt e e eh e e e bt e e ebee e bt eeebee e bt e e sbee e b teesbesesbeeesbesesbesebasesbasanbesesreas 47
FRAIMEBOX ..ottt e e et et e et e et e et e et e et e et e emeeeeeeeeen et e e e e ene e e e e e er et eaneeeene e e et e e e e et e et eaeeennes 47

FRAMECLOCK ...ttt bR e R e R e bt e Rt R et nm et r e n e nrns 48

FRAIMECOUNT ...ttt sttt st b et e st s et e be s b e e bt e bt es e a8 £ e m e e s besaeeE e e Rt a8 £ e s e em e e beeb e e beebe et e eneeneeneesbesbesbeeteaneans 49
FRAIMEDISK ... ettt sttt ettt et b ekt h e e st e s e m e et e ee e e b e e Rt eE £ e s e en e e s tesbenbe s Eeebeeseenteneenbesbesbeereeneens 49
FRAIMEHEX ...ttt sttt ettt bt bt Rt e bt a8 e s et e sh e e Rt ARt eE e e s e em e e s besb e be s b e eb e eneenbeeesbesbesbeeteene e 49
FRAIMEIMAGE ...ttt sttt ettt b et h e e bt e s et e b e se e e b e e Rt eE £ e s e em b e beeb e e be e beebeeneenteeesbesbesbeeteenens 50
FRAIMELINE ...ttt ettt bt bt bt e bt e s e m e et e sh e e E e e EeeE e e s e em e e s benb e e be e beee e eneenbeeesbesbesbeeteene e 50
FRAIMELIST ..ttt st b ettt et ekt s b e bt R e e st a8 e s e e st e ee e e b e e EeeE £ e R e en e e s beeb e besbeeb e eneenbeeesbesbesbeeteeneans 50
FRAIMEMALZE ...ttt bbbt bbb et bt eh e e bt AR e h £ e b e e R b oAb eeE e bt e bt eb e e he e s b e b e bt e bt sbeebeene e 51
FRAIMEMELD ...ttt b bbbt bt h et b e h e b e AR e H £ e b e e st e st e eE e bt e bt eb e e he e s b e e e b e nbesbeebeene e 52
FRAIMEIMOSALIC ...ttt bbbt bbbt s e e b e b e eE e e H e 4R eh e e e A b e bt e b e e bt e bt eb e e st e s b e e e ebenbenbeebeene e 52
FRAIMENET ...ttt et b bbb e R e s oo E e bt Ak e £ H £ e b £ e R b e s E e b e bt e bt eb e e b e e st e d e b e nbeebeeb e e beennennen 52
FRAIMEPATH ..ottt b bbbt h s £ et e b eh e b e A b e E £ e b e e Rt e Rt e eE e bt e bt eb e e b b e s e ne e b e nbesbeebeene e 53
FRAIMEPER ..ottt et bbbt h oo E ek b e b £ e b e e R b e s b e b e bt eb e eb e e bt e st e e e bt bt bt beereenr e 53
FRAIMEREC T ...ttt sttt sttt st b et ae et e st e bt s b e e bt e b e es e a8 £ e s e e s b e eh e e b e e EeeE £ e s e em e e s benbeebeebeeb e eneeneeneesbesbesbeereeneens 54
FRAIMESUB.......co ittt ettt et sttt e b e b e e R e e Rt e st e e e e ke eEeeb e eb e em e e s e et e beebeebeeReenbeaeebenbesbeebeaneeneesnens 54
FRAIMETRANS ...ttt sttt s et e be s be e bt e b e es e a8 £ e m e e st e sh e e b e e Rt a8 £ e s e en b e beebenbeebeebeeseenbeeesbesbesbeeteaneens 54
LAY | I USROS USRS 54
]ISt o] £ TSP ST OO P TS POU P PUOURPRRPPTO 56
(000 11111 1=] 01 TSSOSO 58
IS 0 £ SSS 59
LG T 1 (=T I LU TP PR PR TP 60
YT a T o[- SR 61
CONVEIT @ PDF 10 IMAJES .. .uteitieiieeitiesieesie et st st e st e s te e teete e tesseesseesseesteesteeaseesseasseaasesteesteesteesteasseaneeaseesaeenseenteenseansenseenes 62
COMMANG-TINE PAFAMELEIS ... e eeiieeiteeie et ettt et e te et e e e e s e e s e e ste e teasteaaeeaseeste e teesteaseeaseeaseesseesaeeneeanbeassesseesteeneeeeeneeaneennns 63
KEYWOIT WIZANecveiee ettt bt b e bt bbbt b e e e bbb e bbb e bt e b b e bt e b et e bt e b e b e bt e b st e st et b en e b 64
T =0 o =L W0 (o OSSR 66
R AT LE =L - o] SO PRS PSSR 67
R TS0 L= 11 (o OSSPSR 69
(07101 10 0] 2= 11 o] FO TSSO TSSO U TP PR PR 71
COMPATE GECKSvetee etttk et kb ek b bbb h bbb bbb b s bt b s bt b e e b e b b e bt e bt e bt b et et b b st e 74
IS 0 0] £ (oL T PO T PO RUP PSP P VR URPRUPRPPON 75
RETEIEICES ...ttt bbbt h et b e b bt e b e R e b e e e b e eh e SR £ S E e eE £ e s e e R e e R SR e AR e Re e R £ e Re e b e b eh e bt Rt bt e e 76
LN O OSSOSO TSSOSO URTUPOURPPP 77
(D] £ (Y= OSSOSO SO URUR PR 79
BASERANGE ...t b bbb bR b e R h R R R £ e e e bR e R e Ee b £ e Rt en b et bbb ebeene e 79
B AT CH et bbbt h bR R R £ AR £ e R e ke R SR £ SR e e R e oA £ e b e R e Rt R £ e R e e R e e Re b e bt ehe bt e beenrenen 79
BEZIER .. oottt sttt et Rt Rt Rt e Rt R oA e R e eRe ARt e Rt eR e e Rt et e EeeRe Rt e Rt en e e aeteneenaeeReaneeneeneens 79
BEZIERS ...ttt sttt Rt R Rt ARt R e R e eRe SRt Rt eR e e Rt et e R e eRe R e e Reen e e aeteneenReeReareeneennens 80
2 I 0 SRS 81
210] I3 = SRS 81
2]] SRS 82
BUTTON Lttt bbbt bt et e 4t bt bt eb £ e E £ e Rt e R b oo E e b e 4 H e e h £ e b £ eh b e R £ e b e b e eh e eE £ e b e es b et e b e nbesbeebeebeeneennen 83
CANV A S ettt bt bbbt h e bt et e bt eh e e b e e E e e R £ e h £ oA e oAb £ E e AR e AR e SR £ e h £ oA e e R AR e ARt Rt e b e et e b e b b e bt bt ebe e e enras 84
CANNVASSIZE ...t bbb b bbbt ke A b e b e bt Ab e e b £ e b £ e bt e s e e e e ke e bt eb e e bt eht e b et e b sbenbenbeeneas 85
CANVASWORK ...ttt ettt et b bbbt h e e b e bbbt b e e b e e h £ oAb e b e b e e b e eE £ e b e e R b e e e b e e be e bt eb e e bt eh e e e et e nbesbesbeabeeneas 85
CARDS ... ettt b E kbR E et eE e E e R R £ R £ oAt oAb e eE e AR e AR eR £ SR £ oA e e R AR e SR e Rt eh £ et e b e b eh e b e e bt e b e e enran 85
CARDSIZE ... ekttt bbbkt h et e b e h e AR e RS h £ e R £ oA e e b eE e Rt Rt e b e et b e b b e b bt be e e s 86
O N TSRS 86
O N S 86
(08 | {0 111N S 2SS 86
O | L I PSS 87
O 1V 0 RS 87
O] 1 RS 88
COLORCHANGE ...tttk bbbt h e e e b e be e bt ek £ e h e e Rt e e e b e e ke ebeeb e e Reehe e e et e nbesbesbesbeaneas 88
(010 @ &S T OO USSPV USSP 89
COMIMENT ..ttt b ekt h bt e e bt oh e eb e e b e e Rt e R e e a e et £H e eE e e b e e b e eh £ e R e e b e e e e eb e e b e eb e e st embenbeebe et e abeebeaneeneas 90
COMPARE ...ttt bt btk h et b e 4t bt bt e h e 2R e e Rt et e eh e e b e ARt SR e e E £ e Rt e b eE e e b e e Rt e b e e Rt et e nbeebenb e e bt ebeeneenean 90
(010] OO OSSPSR 90
COPY CARD ...ttt ettt bbbt h e h e e e o4 e bt e bt e b £ e E £ o8 £ 2R b e b e bt A H e eE £ e b £ eR e e s e e b e ke e b e eE e e Reehe e e et e nbeshenbeabeeneas 91
(@1 @] 3 { {131 I8 1]\ PSR SS 92
LT LUV 1 S 92
3 = O SO SSRS 93

DICE .. R R R R R R R E R R Rt e r e aR e 94
DISPLALY bR R R R R R bR R R e e r e r e R 95
DOWNLOADt b bR b e bt s et eE R AR b b e et e E Rt Rt Rt e e n e r e r e 95
] T T TSP P TSP PPV VTPRPRUPRPTIN 96
DIRAWV .1 bt e R R R R R R R R R E R R R et e r e r e ar e E e 96
DUPLEX ettt bt e bbb h e E R AR R R R e bR R Rt h e e r e r e aR e 97
EDGE e e 97
ELLIPSE ... o e 98
B S E e 99
B LS IR < e 99
EIND e e 99
ENDFRAME ... o 99
EIN DI R R R R Rt r e 100
ENDIMAGEENC ...t E bt bt et b e bbbt b b e e e e sr e r e sb e er s 100
ENDLAYER. ...ttt E e R R bR 100
EINDLINK L.t E bbb e R R SR e R e r R R Rt r e E bt 100
ENDSECTION ...ttt e bR bt h s et bR R R e e bt e b e e e nh Rt e bt b e e e e enenn e sb e en s 101
EINDSELECT ..ttt bbbt e b bR bt h e st e bRt R R bbb bR Rt R Rt n e r R b s 101
ENDSEQUENCE ...ttt bbb e b b bbb bbb bbb 101
ENDVISUAL ..o e bbb bbb bbb bbb b 101
EXPRESSION ...ttt bbb bbb bbb 101
FACTORS ..o bbb E e E bbb e R b e b h bbb e e 102
1 T TP U TP PR 102
LA G S, et E R R R R R R e R e R R R Rt n R E bR 103
FOLD ..ttt E R R R R R R R R R R R Rt n e R E R E e 103
FOLDER. ...ttt b bk e bbb e Rt e R R R R R R R R Rt n R R bR 104
O T et E b h e R R R R R R R R R R R E R R R n e R R bR 104
FONTALILAS L.t h et r e E bR bt e bt h e b b e R e R R e eh e b e e s e b ne Rt e bt b et e e e en e b b en s 105
FONTOCHANGE ...ttt bbbt et e bRt b e Rt e Rt e e e b e Rt eb e bt b e bt et e e en b b eneens 106
FONTRANGE ..ot bbb b b e bbb bbb 106
FOOTER. ..o e bbb e e bbb b e bbb bbb bbb e e 107
O R e e 107
FRAME ..o bt r bbb s 108
G P LR h R 108
GRADIENTS e bbbt bbb bbb et e b s b b e b e b et b e bbb ere s 109
GRID .t h bR R R R R e R R R R R R R Rt Rt a et n R bR e e nea 110
HEADER ...ttt E b bR R R R R R R R e n R b b 110
HEXGRID ...ttt e bbbt e Rt Rt SRR e R e et R R R R e n R bt b 111
HTMLBORDER...... ettt bbb h e bbb e e bRt eh bt b e eh e e e b e e nnenn b b enes 112
HTIMLFILE oottt b E et E e Rt bbb e s et b e et R e bt b e e e b e e en e n e b en s 113
HTIMLFONT bbb bbbt b sh e bbb e et sa e sb bbb ens 114
HTMLFONTSTEP ...t et bbb sr bbb 115
HTMLIMAGE ..o e bbb bbb s b b e bbb e et sb bbb 115
HTIMLEKEY Lo bbb bbb bbb e bbb e et sb e s b e bbb e 116
HTIMLLANG ... o bbb bbb b bbb et sa e sb e bbb 117
HTMLMARGINS ... e bbb sr e bbb 117
H T ML T EXT ettt b bt h et e e E bR E e bt h e e s b e ARt R e R eh e b et e bt ne e Rt bt eh et e neenenr b eneenes 118
TCON et b b b h e h e E R AR R R R E R R R R R E R R R AR R R R h bt n e 119
ICOINS ettt h bt b h e h e h R R R R AR R R AR R R R E R R AR e R R e R r bt 119
LTSS T TSP TP RO RP PP PP PPTPRPROROS 121
IIMIAGE ... e e E b h bR h R R R R R R R R R R r bt 122
IMAGEENC ... ot e b bbb b st e E R e R e e R £ e b e a e e s s e s bR e e R et n et r bbb b ene s 125
IMAGEFILTER ...t bbb e h b bbbt e e r bbb eene s 125
IMAGELIMIT o bbb b bbb e bbb b e bbb s e e e en e b b e b e eene s 126
IMAGESIZE ...t bbbt a bRt 126
INCLUDE ...t b bbb bbb e b e b b s b e e b e b ek e e b bbb e beebe e 127
INPUTCHOICE ... e bbbt a e bbb bbbt e e n et b e b eene s 127
INPUTLIST . bbb h bbbt e bt e e b e b b e bbb e st e e e bbb e b e e s 128
INPUTNUMBER ...ttt bbbt b bbbt e e et e e e Rt bt bt e bt et es et e b et e nb e b e b e ene s 129
INPUTTEXT ottt h ket s b bbb b e s e et e R e R e ARt e R £ e b e e a b e s e e Rt Rt e bt e bt e hees e e e n e bt nb e et e b e ene s 129
LABELMERGE ...ttt bbb E ekt h e R R R R h e n e n b b n s 130

LAYERDRAW ...ttt bt e bbb E R R bt E Rt R Rt n R b r s 131
LI 1Y N T T TP U TP PR 131
LI E R R R R R R Rt r bt 132
LINERECT ..ottt bbb e e Rt R R e R e bt r Rt Rt R et e e r e E bt 133
LI K R R R R R r b 134
LINKADO ...t h bbbt e R R SRRt r R R R r e r bt 136
LINKAUTO ... bbb bbb b e bbb bbb b bbb b 136
LINKCACHE ..o bbb bbb b e e e bbb b 136
LINKCOLOR ..o bbb bbb bbb bbb 136
LINKENGCCSV ... b bbb e bbb et b bbb 137
LINKENGCODE. ...t bbb b e bbb e et b bbb b 137
LINKEXEC ... bbb bbb b e bbb e 137
L INKFTLL e b bbb e bR bbb e e e Rt bRt e e en e bbb e e 137
LINKFILTER .ottt h R bbb nh bbbt n e sn b b en s 138
LINKFONT ettt bbbt s b bR E e bt e s e e s E e e H e R R e e bt e b e e et sb Rt s ke b et e b e en e r e b e en s 138
LINKIMULGCOPY ..ttt bbbt s b a bbb e bbbt bbbt e n e en b b en s 139
LINKIMULDIS ...t b e h bbbt et e b eh Rt bt b et e en e nr b en s 139
LINKIMULTI ot h e h bbb b e ee Rt b e b et e e en e n e sb e n s 140
LINKNEW ... bbb bbb bbb e e 140
LINKRANDOM ...ttt b bbb e b bbb e bbb b 140
LINKSEP ... e L e 141
LINKSPLIT L bbb e bbb sb e b b e b et sa e b bbb 141
LINKSTYLES .o bbb bbb b e e bbb 141
LINKTAB .. ettt bbb h bbb e h e e E R e AR SR e R e e s et s Rt e bR e et et e Rt Rt bt b e e 141
LINKTRIM . .ttt h bbb e e Rt AR R e b e st et e e Rt e bt e Rt et e e en e b ebe et e e e 142
LINKUNILL e e bbbttt e bR R e b e e s b e e e Rt e b e e bt et et en bbb e ne e 142
LLOADPDRF ...t E e E R R R R AR R R n e r R bR 142
LLOG ettt R R R R R R R R R R AR R R Rt n e n R Rt 143
IMACRO .. .ttt b b h et e R b bR e et E R RS R e R R E R R R e R R bR e 143
IMANDALA bbb e bbb E bR b bbb 144
MARGINS ... e bbb e e h bbbt b bbb 144
MERGEPDF ...ttt e 145
IMOSAIC ... e bbb e E b bbb e e bt e e b b e b e bbb s 145
NANDECK ...t bbb h b bbb e et b e s bR s bR e bbb 146
N =5 TR U TP PP 146
ORIGIN <t bt E bbb h e h et e e R e R R e e Rt e s e s e e bt s e e Rt e bt b e s e e a e e e e n e Rt b b e e enrenen 147
OVERSAMPLE ...ttt h bbbt h ettt ARt E e bt h et st et R Rt R e st renn e r e 147
PAGE ... R R R R R R R R R e R R e Rt e e r Rt r e r e e 147
PAGERONT ...ttt bt e Rt b e bt h e e h e et E e Rt A bt e R £ R e e h e e st Rt e Rt e b e e st n e n Rt r e r e 148
PAGEIMAGE ...ttt bt e E bbbt ea et Rt R AR R R e st et R Rt R Rt n e r e n e r e nr e 149
PAGESHAPE ... e 149
PATTERN Lo e bbb bbb bbb e b e e bt e e bbb e b e b e 150
P R e 151
POLYGON L. bbb E b b e bt b e s bbb bbb e e b b r bbb 152
PRIN T e E bbb E R R E et 152
QRECODE ... bR 153
RANGE ...t E b b E et E R R R r R R Rt n e n R b b e 153
RECTANGLE.ottt e b bbbt h e s b bt e h b b eh e b et et eb e Rt bt bt et e b e b e e nenbeeb e b enes 153
RENDER ...ttt bbb b bbbt e bR R RS R R R R R R Rt n e Rt R bt b 154
RHOMBUS .. h b bbbt bt s e b bt AR bbbt e s e b et e et Rt e bt b et e b e b anenb b b enes 154
ROUNDRECT ...ttt bbbkt h et e b bbb ke s e b bt ARt R b e eh e b e e e et ne e Rt e bt eh e e et e been bbb enes 155
RTEFILE ..ottt bbb bbb e bt E Rt E e e b b e st e s bt et Rt bt e Rt et e et e bt bt e bt b e ne e 156
L I I = [T ST TP TP T TP T PP PR 157
SAVE e E bRt et 157
SAVEGIFA e et e 158
SAVEPAGES ... e et 159
SAVEPDRF ..o et 159
SECTION L.t b et e e E b e R bbb et e b sh e R s bbb e e e e e e n e r bbb e e 160
SE L E T -ttt bR R R R R R R R R R R e Rt R e e Rt e Rt Rt bR e e nen 160
SEQUENCE ...ttt et bbbt e E bt b e h e h e b e bt e h R AR SRt R e e s R R e Rt Rt r R er b ene s 161
] T TSP U TP R U P TP PRTPRPRUPRPPIN 162

I = TR 163
Y IO TR 163
N 1Y/ 1510 | TR 164
BN = I TR 165
B C TR 165
B 1 TR 166
L= 1 166
B =0, 15O]V 168
L= T 1 169
B L AN 51 3 169
1 1 1 = 170
¥ 4 170
IR YN S = O IR 171
TRANSFORM ...ttt et e e ettt e e et e e sttt eeeabbte e s eabeseesabteeesesbeeessabessesbbesessabbesesasbessssabtaessnbneas 172
IR A T I R 172
111 O TP 173
AV O 1O = TSR 173
Y 110 7 TR 174
Y010 11] 175
740 1 1 S 175
LOTaTo [c= Y- T 4]] L= RSSO 176
T T o T Lo o010] (=] £ O O PP PP UPRPR 176
DT Tot= B (T U1 L R 177
1010 (< 1 - o1 TR 178
BOGGIE QICE ...t bbb Rt bR b bR bbbttt 179
L0112 1 T TSP U R US SO PP PRPRPRORTIN 180
(O [0 103 GRS 181
[[010 L= o TR 182
THIANGIE MNBP .ttt b bbb bbbt sb st b e e b e st ekt A b e s eb e e E e R e e bt e E e b e eb e e b e s £ eb e e R e Rt ekt eb et ekt e bttt eb et nres 183
(O 0 Lo TSIyl oo T 1 (o RN 184
B AN 1o 185
[e - (=1 1 - (o3 R 186
B LT3 01) 187
(L0 o= gAY T TR 188
LI o] 1 L= E 3] =TSSR 189
[1 IR] T=T OO 190
(00001 oY [T £ o) 4 LTS R TR TPRR 191
) E= 1[0 b 1o I Yo [<Tod C o)l ox 10 TR 192
HEXAGONAT THES ...ttt bbbt bbb bbbt bbbt b bbbt b et s et e b s 193

An overview

nanDECK is a program capable of creating graphic elements from scripts: every line of a script contains a command,
for rendering texts, rectangles, and other graphic elements. The program was made for creating cards, but it can be used
for many other graphic objects; each card is treated like a different page, in which you can draw different graphical
elements. At the start, you can write the script in the large edit box in the center of the window:

"l nanDECK - Ver. 1.27 - X
Add new tab
1[FONT = Arial
2 TEXT = 1,"SE:

El

New deck | wiz ‘
= 2, B, #0000FF

, 0, 0, 100%, 100%, center, center

Opendeck | ll
#FF0000
", 0, 0, 100%, 100%, center, center

4 FONT = Arial,
s TEXT = 2-4,

Beopen deck. 3

7 FONT = Arial,

8 TEXT = 5-13,

s

10 RECTANGLE = 1-18, 0, 0, 100%, 100%, #FFFFFF§000000#FFFFFFE90, empty, 1

== SEER

Esit program

#000000
R", 0, 0, 100%, 100%, center, center

Library.

Yaidate deck.

Build deck

Print deck.

[] Lk first 1 FPreview
[Link ds. Go'to card [Aute buid
e ineges [MT [l Highlcht Highlcht CPartal
FOF | CP K < > 51
GlFa | TIFF
Card preview Canv
Visual Edilor Comp
Print scipt
Inseit > Soiipt it Edit
Linked data Table 18
FONT="font name", font size, style B/LL/S/TN/C/R/H/Q/EFZ/FNV/PIO/D/G/AX Y, himl color | htm radient, At color / i gradient, outiine x, outine y, step x, step v, char space 5] [*] [| Copyscrit | [CopptoBGG
Frd | ol
7 FONT =Aial, 28, B, 4000000 ~| [~ E1Bod ~ The Bame Crafter Sim
& TEXT=518 "VILLAGER", 0, 0, 100%, 100%, center, certsr A]Adigrad
dd | Com | Rem |10 RECTANGLE=1-1,0.0100%, 100%, #FFFFFFE000000SFFFFFF@30, emply. 1 € Cicular
Labels DK D) Diag 1
Deck vad E)Cic. 34 q
FiFit size
Help[F1] | (F2) | Building deck) Diag 2
Deck buit (00:00:00:514) m Crcha
RECTANGLE 000000212 (41%) aic 7 i
Corfig | Infa | TEXT 000000087 116%) e] Alldeck [e]
v |F eree Y

Deck size: 52 MBytes

You can load a script with the “Open deck” button, save it with “Save” and “as” buttons, and create the deck with the
buttons “Validate deck” and “Build deck”.

Tip: You can do both if you right-click the “Validate deck” button.

All commands start with a keyword, an equal sign (=) and a list of parameters; for many commands, the 1% parameter is
a range of “cards” in which the command will be executed. The commands without a range will be evaluated only once
(for example the BORDER directive to draw a border on all cards, or the CARDS directive for setting the number of the
cards in the deck), or for every card (like the FONT directive); in other words, the program creates the 1% card in the
deck, and executes all the script on it, then it switches on the 2" card, and executes all the script and so on; each ranged
directive is executed only if the range match.

Note: the CARDS directive is no longer needed, now the program creates automatically a deck using the information
from all the directives in the script. For example, if you have a 10-30 range, the deck will be created with 30 cards.

For example, in a game of Werewolf, I need a card with a word “SEER”, three “WEREWOLF” and thirteen
“VILLAGER”. The first card will be:

FONT Arial, 32, B, #0000FF
TEXT = 1,"SEER", 0, 0, 100%, 100%, center, center

With the 1% line, | choose a font: Arial 32, bold, and blue (the #0000FF parameter); with the 2" line | draw the word
“SEER” in the center of the whole card #1 (starting from 0,0 — top left of the card, 100% width and 100% height). The
other cards will be drawn with these lines:

FONT Arial, 24, B, #FF0000
TEXT = 2-4, "WEREWOLF", 0, 0, 100%, 100%, center, center

FONT = Arial, 28, B, #000000
TEXT = 5-18, "VILLAGER", 0, 0, 100%, 100%, center, center

Note the range 2-4 and 5-18, for three and thirteen cards. Other elements can be added, for example a rectangle:
RECTANGLE = 1-18, 0, 0, 100%, 100%, #FFFFFEF#000000#FFFFFF@90, empty, 1

The rectangle is on all the cards (range 1-18), from 0,0 — top left, 100% width and 100% height, with a gradient starting
from white (#FFFFFF), to black (#000000), again to white, rotated 90°; not filled (empty parameter) and with a border

thickness of 1.

The flexibility of the program is that an element can be added on one or more than one card, changing only the range
parameter. If you want to add an image on all the cards, you can add a line like this:

IMAGE = 1-18, "Logo.png", 0, 0, 20%, 20%, 0, TP
In the left bar in the main window, you can use these command buttons:

New deck: creates a new, empty script

Note: if there is a file named “newScriptTemplate.txt” in the same folder with the executable, this file is automatically
loaded when you press the “New deck” button.

wiz: creates a new script, by selecting some starting options

Open deck: open a saved script

all: open all the scripts (files with extension .txt and .nde) in a folder

Reopen deck: open a saved script, choosing one from a list of the last accessed scripts
Library: shows you a list of examples (downloaded from Internet)

Save: save the current script

as: save the current script with another name

Exit program: close the program

Validate deck: the program checks the syntax of the script

Build deck: the program builds the deck of cards

Print deck: the program prints the deck of cards

Save images: the program saves the images of each card of the deck, see page 61

MT: the program can launch several instances of itself, each with a range from the current deck
PDF: the program creates a PDF file with all the cards’ images, see page 60

CP: the program creates one image from each page of a PDF, see page 62

GIFa: with this option, you can save the current deck into an animated GIF image (you can choose the delay between
images and select an optimized palette)

TIFF: with this option, you can save a multi-page TIFF image (with RGB or CMYK color space)

Print script: prints the current script

Insert >: this button opens a menu, where you can insert a color, a font, an image, a symbol, a gradient, an include file,
a linked file, a label, a frame, a folder, creates an automatic layout (b/n, color, n/b, and the same options randomized),
converts all the TEXT directives into HTMLTEXT, encodes an image file into the current script, or add codes to use the
icon from Game-icons.net font

Linked data: you can edit the data from a linked csv file, see page 66

Find: find a string in the script editor

rpl: find and replace a string in the script editor

Add (CTRL+R): the program adds a comment in the current line / selected block of the script

Com (CTRL+E): the program toggles a comment in the current line / selected block of the script

Rem (CTRL+U): the program removes a comment in the current line / selected block of the script

Help (F1): the program shows a help page for the current directive

(F2): the program shows a window for modifying the current directive

Config: the configuration options, see page 71

Info: info about the author

In the right bar, you find a preview of the current card and if you hover the pointer on a feature, a hint box shows you
the corresponding line(s) in the script; a CTRL click moves the caret to the corresponding line. In this bar you can use
these command buttons:

Link first: if you check this option, only the first line from a data file (csv or spreadsheet) is read, for testing purpose

Link dis.: if you check this option, the data file (csv or spreadsheet) is not read, and are shown only the fields’ names,
for testing purpose

Highlight (checkbox): check this option to highlight with colors each line of the editor and each graphic element of the
preview

Go to card: click to select a card from the deck to be viewed

Highlight (button): click to highlight the graphic element of the preview corresponding to the current line of the editor
Preview: remove the check in this option if you want to hide the card preview (the rendering is faster)

Auto build: check this option if you want to see in real time the script’s changes in the preview

Partial: the program renders the current card only until the position of the cursor in the editor

Arrow buttons: with these buttons, you move between the cards of the deck (first, prior, next, and last), with a left-
click you can go to the next different card

Card preview: this button shows you an enlarged view of the current card

Canv: this button shows you the canvas (the card number zero)

Visual Editor: the program opens the visual editor window, see page 69

Comp: this button shows a window for comparing different decks of cards

Script list: in this window, you can execute several scripts, in a batch mode, see page 59

Edit: in this window, you can edit the content of a linked spreadsheet file

Table: the program opens the virtual table window, see page 67
TTS: with this option you can load duplicates of card, tiles and tokens in Tabletop Simulator save file

The Game Crafter: in this window, you can upload a deck of card directly to the website
http://www.thegamecrafter.com for printing and/or publishing your game

Sim: this option allows you to run a Monte Carlo simulation on the drawing of a hand of cards or a roll of dice

All deck: this button selects all the cards in the deck to be rendered (the start-end range is in the two edit boxes to the
left and right of this button)

10

http://www.thegamecrafter.com/

Editor commands

CTRL+X Cut

CTRL+C Copy

CTRL+V Paste

CTRL+A Select all

CTRL+B Validate and build the current card

CTRL+I Insert card’s number (character §)

CTRL+O Insert frame’s number (character °)

CTRL+P Insert frame’s number (character 1)

CTRL+R Comment current line/selected text

CTRL+U Remove comment from current line/selected text
CTRL+E Toggle comment on/off in current line/selected text

SHIFT+CTRL+I
SHIFT+CTRL+U
SHIFT+ALT+UP
SHIFT+ALT+DOWN

Block indent

Block un-indent

Move block up one line
Move block down one line

CTRL+D Add new tab with a new version
SHIFT +CTRL+D Duplicate current line/block
CTRL+M Line break

CTRL+N Add new tab (empty)

CTRL+T Show windows side by side
CTRL+Y Delete current line/block
SHIFT+CTRL+Y Delete EOL

CTRL+Z Undo

SHIFT+CTRL+Z Redo

CTRL+0...9 Go to marker 0...9

SHIFT+CTRL+0...9

Set/remove marker 0...9

SHIFT+CTRL+C
SHIFT+CTRL+L
SHIFT+CTRL+N
SHIFT+CTRL+B

Set columns selection
Set lines selection
Set standard selection
Match bracket

CTRL+F Find

CTRL+H Replace

CTRL+G Go to line

F1 Help (current line directive)

CTRL+F1 Auto layout (white on black)

F2 Modify (current line directive)

CTRL+F2 Auto layout (color)

F3 Modify (current line directive, visual mode)
CTRL+F3 Auto layout (black on white)

SHIFT+F3 Convert selected text to upper/lower case

F4 Visual editor

F5 Auto build switch

CTRL+F5 Insert character for Game-lcons.net font

F6 Go to card

F7 Highlight current line

CTRL+F7 Highlight all lines switch

F8 Insert label

CTRL+F8 Insert frame

F9 Insert color

CTRL+F9 Insert gradient

F10 Partial build switch (build source until current line)
F11 Select the next font (in alphabetical order)
CTRL+F11 Select the previous font (in alphabetical order)
F12 Open the reference manual (if not present, it is downloaded)

Tip: You can copy the current card’s image if you press CTRL+C after a click on the card image.

11

Tip: You can validate and build the current card’s image if you right-click on the card image.
Tip: You can erase the current preview (and free the RAM) if you wheel-click on the card image.

Tip: You can validate and build the whole deck if you right-click on the “Validate deck” button.

Tip: You can edit more than one script simultaneously, right click on the tab on the upper side of the screen and choose
the voice “Add new tab” to add another tab to the editor.

Tip: You can move between cards using the mouse wheel.

12

Getting started...

This is a simple yet complete tutorial about how to create a deck of cards starting from a spreadsheet file.

First, | wrote some data, and save them as Data.xlsx:

A B c D E F G]
1 Mame Desc Img lcons Value Mum
A desert is a barren area of land where
little precipitation occurs and conseguently living
2 |Desert conditions are hostile for plant and animal life. desert.jpg EF 8 1
A lighthouse is a tower, building, or other type of
structure designed to emit light from a system of lamps
and lenses and used as a navigational aid for maritime
3 |Lighthouse pilots at sea or on inland waterways lighthouse jpg EW 10 2
Jellyfish are typified as free-swimming marine animals
consisting of a gelatinous umbrella-shaped bell and
Jellyfish trailing tentacles. ellyfish_jpg AW 5 3

L =

Note: each column will be identified with the name in the first line (each must be different).

| start nanDECK, and as first line | link that file:

LINK = Data.xlsx

Then | save the script, as tut01.txt, in the same folder with the Excel file (if | want to save it in a different folder, in the
LINK line I must also specify the path, for example c:\users\nand\desktop\data\data.xIs).

I want to put the title in the top of the card, then I select a font with the line:

FONT = Arial, 24, , #000000

Font name for the 1%t parameter, size for the 2", and color for the 4. The 3" is empty, this is the place for flags like B
(bold), I (italic), U (underline) and so on (among others, if you want to shrink the font size to fit the space, use a N flag,
if you do not want to see the text background, use a T flag). If you use more than one flag, put them all in this parameter
(for example: BTN).

And add the title with this line:

TEXT = 1-3, [name], 0, 0, 100%, 20%

The 1% parameter is the range, and | want to put this text on three cards (from 1 to 3, then the syntax is 1-3), the 2™
parameter is the column name from the Excel file (enclosed in square brackets), the others are the position (0, 0 is top

left), width (100% of the card’s width) and height (20% is a fifth of the card’s height).

Note: I can use also values in cm, and | can specify 0, 0, 6, 1.8 (for a default card of 6 x 9 cm), but with percent values |
can change the size of the card without having to change every size of every element.

With a click on “Validate deck” button, “Build deck” button, the deck is created with three (ugly) cards:

Desert Lighthouse Jellyfish

Let us add some images:

13

IMAGE = 1-3, [img], 0, 20%, 100%, 40%, 0, P

The 0 in the 7™ parameter is the angle of rotation for the image, and the P is for proportionally resize the image, if you
have transparent PNGs, add a N flag in the same parameter (i.e., PN).

I have added the images’ files in the same folder with the spreadsheet and the script, and this is the result after Validate
+ Build:

Desert Lighthouse Jellyfish

p——

These lines are for the description:

FONT = Arial, 10, , #000000
TEXT = 1-3, [desc], 5%, 65%, 90%, 30%, left, wordwrap

I choose a smaller font, and since the description is more than one line, | add left as horizontal alignment and wordwrap
as vertical. This is the result:

Desert Lighthouse Jellyfish

These lines are for the value column:

FONT Arial, 32, T, #FF0000
TEXT = 1-3, [value], 0, 20%, 20%, 40%

To make the number readable on every background, I can add an outlined text:

FONT = Arial, 32, T, #FFFFFF
TEXT = 1-3, [value], 0, 20%, 20%, 40%, center, center, 0, 100, 0.1

The “0, 100, 0.1” are respectively for angle, transparency, and outline width.

Note that these lines must be added before, because every element in a script is drawn accordingly to its position: first
are drawn elements in the first lines, the last drawn are those in the bottom lines.

Desert Lighthouse Jellyfish

I have four icons (one for each element), each identified with a letter in my Excel file (and on each card, there may be
more than one icon). | add these lines in the script:

ICON = 1-3, A, air.png

ICON = 1-3, E, earth.png
ICON = 1-3, F, fire.png
ICON = 1-3, W, water.png

ICONS = 1-3, [icons], 80%, 20%, 20%, 40%, 20%, 10%, 0, PN

14

In the last line, I specify the icons’ area (80%, 20%, 20%, 40%), the size of each icon (20%, 10%), the angle of rotation
(0) and to use proportional resize (P) and PNG transparency (N).

I have added the four .png files in the same folder. And this is the result:

Desert Lighthouse Jellyfish

A

Finally, | want to duplicate each card for the number specified in the “num” column, then | add, as first line (before the
LINK), this directive:

LINKMULTI = num

I must also change every range 1-3 into 1-7. This is the result page:

Desert Desert Lighthouse

JR——— — —

8 8

A desert is a barren area of land A desert is a barren area of land A lighthouse is a tower, building, or

where little precipitation occurs where little precipitation occurs other type of structure designed to

and consequently living conditions and consequently living conditions emit light from a system of lamps

are hostile for plant and animal are hostile for plant and animal and lenses and used as

life. life. a navigational aid for maritime
pilots at sea or on inland
waterwavs.

Lighthouse Jellyfish Jellyfish

—

A lighthouse is a tower, building, or Jellyfish are typified as Jellyfish are typified as

other type of structure designed to free-swimming marine animals free-swimming marine animals
emit light from a system of lamps consisting of a consisting of a

and lenses and used as gelatinous umbrella-shaped bell gelatinous umbrella-shaped bell
a navigational aid for maritime and trailing tentacles. and trailing tentacles.

pilots at sea or on inland

waterwavs.

Jellyfish

Jellyfish are typified as
free-swimming marine animals
consisting of a

gelatinous umbrella-shaped bell
and trailing tentacles.

This is a more compact version of the script, here the 1t parameter (the range) is empty for most directives because |
want to put the text/images on all the cards, and if I leave the 1% parameter empty, nanDECK uses as a default 1-n,
where n is the number of lines in the Excel file.

15

LINKMULTI = num
LINK = Data.xlsx

FONT = Arial, 24, , #000000
TEXT = , [name], 0, 0, 100%, 20%

IMAGE = , [img], 0, 20%, 100%, 40%, 0, P

FONT = Arial, 10, , #000000
TEXT = , [desc], 5%, 65%, 90%, 30%, left, wordwrap

FONT = Arial, 32, T, #FFFFFF

TEXT = , [value], 0, 20%, 20%, 40%, center, center, O,
FONT = Arial, 32, T, #FF000O

TEXT = , [valuel], 0, 20%, 20%, 40%

ICON = , A, air.png

ICON = , E, earth.png

ICON = , F, fire.png

ICON = , W, water.png

ICONS = , [icons], 80%, 20%, 20%, 40%, 20%, 10%, 0, PN

16

100,

0.

Ranges

Many directives (like IMAGE or TEXT) have a parameter for specifying for which cards will be executed that
directive. A card in a range may be specified directly with a number, a list of cards with a list of numbers separated by a

comma “,” and a range of cards with the first and last cards separated with a dash “-” or the first card and a number,
separated with a number sign “#”.

Examples:

RECTANGLE = 1, 0, O, 6, 9, #0000FF
RECTANGLE "1,3,5,7", 0, 0, 6, 9, #O000OFF
RECTANGLE 1-10, 0, 0, 6, 9, #000OFF
RECTANGLE = 10#5, 0, 0, 6, 9, #0000FF

Note: in the 2" line the range must be enclosed in quote for the presence of commas, however, you can always enclose
all ranges in quotes.

You can mix the two methods, and use a complex range, like:
RECTANGLE = "1-10,12,15,19-20,35#3", 0, 0, 6, 9, #0000FF

A number in a range can be the result of an expression (see page 56) and must be enclosed between “{” and “}. For
example:

RECTANGLE = 1-{2*5}, 0, 0, 6, 9, #0000FF

Note that a best practice is to create a range (and therefore a label) linked with the number of elements in a sequence, as
when read from a linked file. For example, if you have a column named "title" in a spreadsheet, you can create a label
for a range with this line:

[all]=1-{(title)}

Note that, since each column in a spreadsheet has the same length, usually is needed only one of these definitions, and
you can use the label [all] with all the directives.

Usually, the order does not matter (1-10 is equal to 10-1) but for one command, COPYCARD, the order is important,
because the source range is uses as specified, these two rows are different:

COPYCARD 11-20, 1-10
COPYCARD = 11-20, 10-1

The 1% row gives as result this sequence of cards:
1,2,3,4,56,7,8,9,10,1,2,3,4,5,6,7,8,9,10

The 2" row gives as result this sequence of cards:
1,2,3,4,56,7,8,9,10,10,9,8,7,6,5,4,3,2,1

There is a syntax that can be used to change that behavior, useful, for example, to invert sub-ranges of cards (for
printing front-back). For example:

COPYCARD = 10-18, 1-9Sabc>cba

The first group of characters is the start pattern, the second group is the destination pattern, in this case reversed in
groups of three cards. You can obtain the same result manually writing:

COPYCARD = 10-18, "3-1,6-4,9-7"

Note that you are not limited at patterns of three letters, you can use all that you need (until the twenty-six letters). This
syntax is useful also if you want to specify a “hollow” range, for example, if you want a rectangle only on even cards:

RECTANGLE = 1-10Sab>a, 1, 1, 4, 4, #FF0000

17

Note: the $abc>cba syntax works only when the total number of cards is defined using a CARDS command.

See also: Labels and sequences chapter (page 22), AUTORANGE label function (page 28), and BASERANGE
directive (page 79) about the interaction between ranges and sequences.

18

Colors

In this program, the colors will be defined by a string of seven characters, starting with a number sign “#” and six
hexadecimal digits (using the HTML syntax), two for each component (red-green-blue), for example:

White #FFFFFF
Black #000000
Red #FF0000
Green #00FFO0
Blue #0000FF
Cyan #00FFFF

Magenta #FFOOFF
Yellow #FFFFOO

Tip: if you use the wizard for a new deck (the “wiz” button, to the right of “New deck” button), you can check the
“Include labels for HTML colors” to obtain a set of 140 label definition for many colors.

| Tip: you can choose a color from a color picker, clicking on the button “Insert” and choosing the menu voice “Color”.

M Choose a color

= . Cancel
]
’
]
o1
HFF7FO0 E—
Orange [Color wheel] w | Saturation [|
Brightnes= ' .
Confirm

If instead of a hexadecimal digit you specify a letter “H”, you obtain a random value from 0 to 15. For example, if you
want a complete random color, with this syntax you can use #HHHHHH, instead for a random hue of blue, you can use
#0000HH, and so on. The letter “L” stands for the last color used, then #LLLLLL is the last color, instead #0000LL is
the last blue component used.

You can concatenate more than one color to obtain a gradient, followed by a “@” to specify the angle. If you use these
special values for the angle, you obtain a special gradient:

360 Radial gradient
361 Elliptical gradients
362 Square gradient
363 Star gradient

364 Conic gradient

These are some examples:

From black to white, horizontal #FFFFFF#000000Q0

From red to blue, vertical #0000FF#FF0000@90

19

From cyan to magenta, radial #FFOOFF#00FFFFR360
From cyan to magenta, elliptical ~ #FFOOFF#00FFFFQ@361
From teal to yellow, square #FFFF00#008080@362

From orange to purple, star #4000804#FFA500@363

From red, to green, to blue, to red,

conic #FFO000#00FFO0#0000FF#FF00000@364

From red, to green, to blue,

. #0000FF#00FFOO#FF0000@0
horizontal

= I

If you omit the “@?, the colors are randomized (and smoothed); specifying a "%" and a number, you set a threshold for
the 2" color, for example:

Blue and red, randomized #0000FF#FF0000

Blue and red, randomized 50% #0000FF#FF0000%50

Red and blue, randomized 50% #FF0000#0000FF%50

Blue, green, and red, randomized #0000FF#00FFO0#FF0000

Specifying a $ and a number, the colors are smoothed that number of times (without specifying it, the color is smoothed
only one time), for example:

Blue and red #0000FF4#FF0000
Blue and red, no smoothing #0000FF#FF0000S$0
Red and blue, two smoothing #FFOO00#0000FF$2

If you add a & and a number in the color, the pattern is created with a Perlin Noise algorithm, with several iteration
equal to the numeric parameter, for example:

Blue and red, eight iterations #0000FF#FF0000&8
Blue and red, six iterations #0000FF#FF0000&6
Blue and red, three iterations #0000FF#FF0000&3

If you add a ¢ in the color, the random pattern is made of stripes (and you can use more ¢ to make the stripes longer),
for example:

Blue and red, randomized #0000FF#FF0000

20

Blue and red, striped #0000FF#FF0000cC

Blue and red, striped x 2 #0000FF#FF0000¢cc

Usually, the stripes are applied also at the color in edge of the object; if you do not want this effect, add a ! to the
definition of the gradient.

Tip: you can choose a gradient from a visual form, clicking on the button “Insert” and choosing the menu voice

“Gradient”.

A Insert gradient b

Angle Liruear

R adial

(®) Gradient

Ellipze

() Randaom
Star
HFFOOO0 Reverse ROOOOFF T Conic
=

Add Up Mo cont i - Cancel

Remove Doty 0 =

There are directives (HTMLFILE, HTMLTEXT, ICONS, IMAGE, LAYER, LAYERDRAW, PATTERN, RTFFILE,
RTFTEXT, TEXT, and TEXTFONT) that have a parameter in which you can set the level of transparency, from 0 (full
transparent) to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this
case, the level of transparency is the starting level, ending with 0 (full transparent). If you use these special values for
the angle, you obtain a special alpha gradient:

360
361
362
363
364

Radial gradient
Elliptical gradient
Square gradient
Star gradient
Conic gradient

You can also add these flags to the level@angle parameter:

$
%

The transparency starts at zero, goes to the level set in the parameter, and returns to zero
The transparency starts at the level set in the parameter, goes to zero, and returns to the starting level.

21

Labels and sequences

A label is used as a variable value in a script and may be initialized and used several times in the code. It can be
initialized with this syntax:

[name] = wvalue
And used specifying its name (always delimited with “[”” and “]”). This is an example:

[alpha] = "This is a text"
FONT = Arial, 32, , #000000
TEXT = 1-10, [alpha]l, O, 0, 6, 9, center

A sequence is a list of values used as a parameter in a directive. Each value is separated using the character pipe “”. For
each card in the directive’s range the program uses a different element in a sequence (restarting from the first if the
sequence’ size isn’t enough to fill the range), for example, if you want ten cards, half with the word “odd” and half with
the word “even”, you can use the TEXT directive, with a range 1-10 and a sequence of the two words as text parameter
(“odd|even”).

FONT Arial, 32, , #000000
TEXT = 1-10, "odd|even", 0, 0, 6, 9, center

Sequences may be exceedingly long; you can manipulate them in a clearer manner if you use them in labels. Usually, a
sequence must be on a single line, but you can split a long sequence into multiple lines, starting the first line with a “{”
and ending the last line with a “}”. For example:

{[long] = "one|

two |

three|

four|

five|

six|

seven |

eight|

nine |

ten"}

FONT = Arial, 32, , #000000
TEXT = 1-10, [long]l, O, 0, 6, 9, center

Tip: The split-line syntax with “{” and “}” can be used not only for sequences, but with every command.

If the label contains a sequence (like in the above example), you can obtain the number of elements contained using the
syntax “(name)”. It can be used directly as a parameter or in an expression. For example:

[alpha] = oneltwo]|three

FONT = Arial, 32, , #000000

TEXT = 1-{ (alpha)*2}, [alpha], 0, 0, 6, 9, center

The result deck will be composed of six cards, with the word sequence one-two-three-one-two-three.

When you define a label, there are some characters you can use as prefix or postfix for the [name] to obtain special
behavior.

[name] number = value

The resulting value is the original value repeated number times. Instead, with these letters as a prefix, you can use this
program as a combinatorial engine:

C combination
P permutation
E derangement (permutation with no element in its original position)

22

F circular shift (right)

B circular shift (left)

CR combination with repetitions

PR permutation with repetitions

ER derangement with repetitions

Tn extracts only a random sample of n elements instead of the full set
Kn stops the creation of the sequence after n elements are added

C[name]number = objectl|object2..0bjectN
P[name] number objectl|object2..0bjectN
E[name]number = objectl|object2..0bjectN
Fl]
Bl]

name] number objectl]|object2..0bjectN
name]number = objectl|object2..0bjectN

These syntaxes create two labels with a combination and a permutation of number objects from the sequences, for
example:

C[labell]2 = A|B|C
P[label2]2 = A|B|C
E[label3]2 = A|B|C
F[labeld]2 = A|B|C
B[label5]2 = A|B|C

these labels will be translated into:

[labell] = AB|AC|BC
[label2] = AB|AC|BA|BC|CA|CB
[label3] = BA|BC|CA
[labeld4] = AB|BC|CA
[label5] = AB|CA|BC

With repetitions:

CR[labell]2 A|B|C
PR[label2]2 = A|B|C
ER[label3]2 A|B|C

the result will be:

[labell] AA|AB|AC|BB|BC|CC
[label2] = AA|AB|AC|BA|BB|BC|CA|CB|CC
[label3] BA|BC|CA|CC

A sample of three elements:
CRT3[1labell]2 = A|B|C
one of the possible results could be:
[labell] = BC|AA|CC
Special flags:

remove duplicate elements

remove “rotated” elements

remove elements with the same “structure”
randomize elements

sort elements in ascending order

sort elements in descending order

keep only crossing paths

keep only paths that does not cross themselves

O~"N>»ZWwXQ0O

23

The “D” flag is useful when you have multiple elements in combinations/repetitions, for example:
C[labell]2 = A|B|C|C

will be evaluated as:

[labell] = AB|AC|AC|BC|BC]|CC

If you do not want repetitions, you can add the “D” flag (as a prefix) and the result will be:
[labell] = AB|AC|BC]|CC

The “X” flag needs a longer explanation. Let us say, you need to create tiles with 4 quadrants, with all the combination
of three elements (plains, woods, and mountains), this is the starting script:

CARDSIZE = 4, 4

[QUARTER1] 0, 0, 2, 2, 0, 4

[QUARTER2] = 0, 0, 4, 0, 2, 2

[QUARTER3] = 4, 0, 4, 4, 2, 2

[QUARTER4] = 0, 4, 2, 2, 4, 4

PR[SCHEMA]4 = P|F|M

[ALL] = 1-{ (SCHEMA) }

[COLOR_P] = #00FF00

[COLOR_F] = #008000

[COLOR_M] = #C0CO0CO

TRIANGLE = [ALL], [QUARTER1], [COLOR [SCHEMA:1,1]]
TRIANGLE = [ALL], [QUARTER2], [COLOR [SCHEMA:2,1]]
TRIANGLE = [ALL], [QUARTER3], [COLOR [SCHEMA:3,1]]
TRIANGLE = [ALL], [QUARTER4], [COLOR [SCHEMA:4,1]]

The tiles are all different, but not if you rotate them, for example, PFPF is equal to FPFP (rotated 90°). To eliminate
them, you can use the “X” prefix. This is the result (1 page of 24 tiles):

The “X” flag can be used more than once, to specify that not all the “rotations” will be considered as equals; for
example, with only one “X”, the sequence 0102 is equal to:
1020

24

0201

2010

In a square token with a number on each side, this is equal to 90° rotations. Instead, with “XX”, the sequence 0102 is
equal only to 0201 (in a square token, this is equal to considering only rotations of 180°, or rather, that rotations of 90°
are not considered).

The “S” flag removes elements with the same structure: for example, the sequence 0102 has the same structure of the
sequence 1210. In the previous example, from the 24 tiles, only six have a different structure:

w<

The “N” flag will be used if you want to randomize the sequence, if you write, for example:

N[elements] = alphal|beta|gamma|delta

it will be randomly evaluated each time you validate the deck, for example as:

[elements] = betalgammal|deltalalpha

After the number of elements, you can specify one or more filters, to keep only a subset of the results, with this syntax:

C[name]number;charl:minl-maxl;char2:min2-max2.. = ..

In the resulting sequence are added only the results that have charl in several occurrences between minl and max1,
char 2 between min2 and max2, and so on.

If you want to analyze only a sub-string from the result of the permutation/combination engine or an external linked
file, you can use the “:” syntax to extract a sub-string, the syntax is [label:start,number] where start is the starting
character and number is the length of the sub-string in characters. For example, in the script about tiles in the previous
page, every line extract only a character from the label (composed of four characters), and associates it with another
label:

TRIANGLE = [ALL], [QUARTER1], [COLOR [SCHEMA:1,1]]
TRIANGLE = [ALL], [QUARTER2], [COLOR [SCHEMA:2,1]]
TRIANGLE = [ALL], [QUARTER3], [COLOR [SCHEMA:3,1]]
TRIANGLE = [ALL], [QUARTER4], [COLOR [SCHEMA:4,1]]

If the label [SCHEMA] was, as an example, “PFPM”, these lines will be evaluated as:

TRIANGLE = [ALL], [QUARTER1], [COLOR P]
TRIANGLE = [ALL], [QUARTER2], [COLOR F]
TRIANGLE = [ALL], [QUARTER3], [COLOR P]
TRIANGLE = [ALL], [QUARTER4], [COLOR M]

Tip: you can view a list of labels, their contents, and choose one of them from a list, clicking on the button “Insert” and
choosing the menu voice “Label”.

You can extract a single element in a sequence using the ? operator in an expression (delimited with curly brackets {
and }). If you omit the number, it is used the current card (i.e., is the same to use ? or ?8).

For example, this script will print the letter “c”:
[ALPHA] = alblcl|dle

FONT = ARIAL, 32, , #000000

TEXT = 1, {ALPHA?3}, 0, 0, 100%, 100%

There is also a syntax for creating labels with a condition and with a for...next cycle (note that you cannot define a label
between standard IF...ENDIF or FOR...NEXT blocks):

25

[label]%[condition], variable, start, end, step = value

The [condition] parameter must be a label (only if present since it is optional); it cannot be written directly because a
condition is too complex to be evaluated correctly in a single line. This is an example:

[checkl]=[al=1
[check2]=[a]l<>1
[color]%[checkl]=#FF0000
[color]%[check2]=#0000FF

In this example, if [a] is 1, the label [color] is red (#FF0000), if [a] is not 1, the label [color] is blue (#0000FF).

The condition can be omitted, in this case the label is defined only if it does not already exist. In this example, the label
[alpha] is red, and the label [beta] is blue:

[alpha]=#FF0000

0000FF
000FF

o =

The label creation can be repeated in a for...next cycle, for example, if you want to define ten labels, with squares, you
can write:

[lab (count)]%, (count),1,9 = {(count)”"2}
Note that the condition parameter is empty (the comma after the % symbol), and that if the step parameter is omitted,

its value is assumed equal to one. The variable (count) can be anything (the parentheses are not really needed). The
result is equal to write this code:

Instead of a cycle between two values, this is an alternate syntax for the definitions of labels in a loop:
[labell%[condition], variable, [sequence] = value

In this syntax, a step in the loop is executed for each value of the sequence (value that is replaced in the variable), for
example:

[seq] = alphal|betalgamma
[lab_(var)]%, (var), [seq] = test (var)

The result is equal to this script:
[lab_alpha]=test alpha
[lab beta]=test beta

[lab _gamma]=test gamma

Note that if [condition] is a sequence of more than one value, the result would be a sequence; if you want to obtain a
sequence without using a [condition] parameter, you can replace it with the & flag, for example:

[seq] = alphalbeta|gamma
[lab]l%&, (var), [seq] = test (var)

The result is equal to this script:

26

[lab]=test alphal|test beta|test gamma

Note that the interaction between ranges and sequences is based on the extraction of the Nth element from a sequence
when is rendered the Nth card in the range, i.e., if you have a range that does not starts with the 1% card of the deck, the
elements from the sequence are apparently extracted wrongly. Example:

[ALPHA] = alblcldle
FONT = ARIAL, 32, , #000000
TEXT = 3-5, [ALPHA], 0, 0, 100%, 100%

In the 3™ card (the 1%t of the range) shows the letter a (the 1%t of the sequence). If you instead want to show the letter ¢
you must add a BASERANGE directive:

BASERANGE = 1-5, ON

[ALPHA] = alblcldle

FONT = ARIAL, 32, , #000000

TEXT = 3-5, [ALPHA], 0O, 0, 100%, 100%

With the BASERANGE directive (see page 79), nanDECK uses the position of the Nth card from all the deck (and not
from the range) to evaluate what element to extract from the sequence, and therefore in the 3" card it goes the 3™

element (i.e., the letter c).

27

Label functions

AUTOLABEL

This function creates a label containing a sequence of numbers. This is the syntax:

[name] = AUTOLABEL (start, end, step, separator, padding)

For example, this line:

[a] = AUTOLABEL (1, 10, 2)

will be evaluated as:

[a] = 1|3[5]719111

The standard separator is the pipe (the “|” character), if you want a different separator, you can specify it as the 4™

parameter. If you specify a number in the 5 parameter, the result number is padded to the left with zeroes until the
length of the number reach that parameter.

AUTORANGE

This function calculates a range starting from the previous AUTORANGE (or card 1, if it was the first instance), the
only parameter is the number of cards in the range (or, if omitted, the number of lines in the linked file). This is the
syntax:

[name] = AUTORANGE (number)

For example, these rows:

[a] = AUTORANGE (10)
[b] = AUTORANGE (5)
[c] = AUTORANGE (8)

will be evaluated as:

[a] = 1-10
[b] = 11-15
[c] = 16-23

You can reset the counter, using a negative number as parameter. For example, these rows:

= AUTORANGE (10)
[b] = AUTORANGE (-5)
= AUTORANGE (8)

©
|

Q
|

will be evaluated as:

[a] = 1-10
[b] = 1-5
[c] = 6-13
CALC

This function is used to get a result from a specific function. The syntax is:

[label] = CALC(flag, valuel, value?2)
You can choose one of these flags:

C cosine function of valuel

28

sine function of valuel

tangent function of valuel

pi function (the other parameters are not used)
the higher between valuel and value2

the lower between valuel and value2

the absolute of valuel

>ZZ2U04HW”W

CASESTRING

This function modifies the capitalization of a string, this is the syntax:

[label] = CASESTRING (string, flag)

You can choose one of these flags:

U the string changes to uppercase
L the string changes to lowercase
F every first character in a string is changed to uppercase, the others to lowercase

If the flag is not specified, the string is changed to uppercase. Note that for texts printed with HTMLTEXT, there are
also three flags in the HTMLFONT directive (see page 114).

CONCAT

This function creates a label concatenating different strings (if you want to concatenate sequences, use JOIN, see page
35, or PRODUCT, see page 37, instead), this is the syntax:

[name] = CONCAT (parameterl, repeatl, parameter?2, repeat2, ..parameterN, repeatN)
Each parameter is repeated several times equal to the next parameter. This is an example:
[test] = CONCAT (#000000, 3, #FFFFFF, 2)

Will be evaluated as:

[test] = #000000#000000#000000#FFFFFF#FFFFFF

CONCAT1

This function is equivalent to CONCAT, with a repetition of each parameter of one, this is the syntax:

[name] = CONCAT (parameterl, parameter2, ..parameterN)

COOFRAME

This function outputs the four coordinates of a frame (see page 43); instead of using the standard <frame> syntax, that
is evaluated in the Validate step, this function is evaluated later, in the Build step. This is the syntax:

[name] = COOFRAME (frame)

COOFRAMES

This function is like COOFRAME and is used when there is more than one frame that can be selected. The 1%
parameter is the number of the frame, selected from all that have the name specified in the 2" parameter (you can also
use wildcard characters like * and ?):

[name] = COOFRAMES (number, frame)

29

COOICON

This function returns the space occupied by an icon (X, y, width, height), given its key; if an icon with that key is not
drawn on the current card, the function returns null coordinates and the directive that uses that coordinate does not draw
anything. This is the syntax:

[name] = COOICON (key, type, width, height, index)

Instead of the whole space, you can use a section of it, specifying a type parameter, chosen from this list:

TL a section aligned to the top-left, using width and height as % of the icon space
TC a section aligned to the top-center, using width and height as % of the icon space
TR a section aligned to the top-right, using width and height as % of the icon space
CL a section aligned to the center-left, using width and height as % of the icon space

cC a section aligned to the center, using width and height as % of the icon space

CR a section aligned to the center-right, using width and height as % of the icon space

BL a section aligned to the bottom-left, using width and height as % of the icon space

BC a section aligned to the bottom-center, using width and height as % of the icon space

BR a section aligned to the bottom-right, using width and height as % of the icon space

T™W a section with the width of the icon space, aligned to the top, with a height as % of the icon space
Cw a section with the width of the icon space, aligned to the center, with a height as % of the icon space
BW a section with the width of the icon space, aligned to the bottom, with a height as % of the icon space
HL a section with the height of the icon space, aligned to the left, with a width as % of the icon space
HC a section with the height of the icon space, aligned to the center, with a width as % of the icon space
HR a section with the height of the icon space, aligned to the right, with a width as % of the icon space
PTL asingle point in the top-left

PTC asingle point in the top-center

PTR asingle point in the top-right

PCL asingle point in the center-left

PCC asingle point in the center

PCR asingle point in the center-right

PBL asingle point in the bottom-left

PBC asingle point in the bottom-center

PBR asingle point in the bottom-right

HTL atriangle, the top-left half of the icon space

HTR atriangle, the top-right half of the icon space

HBL atriangle, the bottom-left half of the icon space

HBR atriangle, the bottom-right half of the icon space

TTL atriangle, pointing to the top-left of the icon space

TTC atriangle, pointing to the top-center of the icon space

TTR atriangle, pointing to the top-right of the icon space

TCL atriangle, pointing to the center-left of the icon space

TCR atriangle, pointing to the center-right of the icon space

TBL atriangle, pointing to the bottom-left of the icon space

TBC atriangle, pointing to the bottom-center of the icon space

TBR atriangle, pointing to the bottom-right of the icon space

ET a line, from top-left to top-right of the icon space

EB a line, from bottom-left to bottom-right of the icon space
EL a line, from top-left to bottom-left of the icon space

ER a line, from top-right to bottom-right of the icon space
ED a line, from top-left to bottom-right of the icon space
EG a line, from bottom-left to top-right of the icon space

If you do not specify the index parameter and there is more than one icon with that specific key, the result is the sum of
the spaces. Otherwise, you can specify the Nth instance of an icon by using the index parameter.

DIRFILES

This function creates a sequence label using names of files from a folder (and subfolders), this is the syntax:
[name] = DIRFILES (path, extension)

The extension can be a sequence of extensions, like jpg|bmp|gif.

30

This is an example:

[img] = DIRFILES("c:\images\", JpQg)

and it will be evaluated as:

[img] = "c:\images\one.]jpgl|c:\images\two.jpg|c:\images\three.jpg"
Instead of an extension, you can specify in the 2" parameter a file mask (with * and ? as wildcards). For example:
[img] = DIRFILES ("c:\images\", "img*.Jjpg")

You can also combine the two parameters in one. For example:

[img] = DIRFILES("c:\images\img*.Jjpg")

ENVIRONMENT

This function reads an environment variable from the operating system, this is the syntax:

[name] = ENVIRONMENT (variable)

For example, this reads the path for the user folder:

[folder] = ENVIRONMENT (userprofile)

EVAL

This function creates a sequence with the results of the evaluation of another sequence, this is the syntax:
[name] = EVAL (sequence)

This is an example:

[alpha] = {1+1}]{2*3}|{3"3}
[beta] = EVAL([alphal)

These two lines are equivalent to:

[betal = 21627

Note: you obtain the same result with a single line:
[beta] = EVAL({1+1}[{2*3}]1{3"3})

EXPAND

This function creates a sequence replicating itself numseq times, with each element replicated numele times (this
parameter is optional, if not specified is treated equal to one):

[name] = EXPAND (sequence, numseq, numele)
This is an example:

[alpha] = alblc
[beta] = EXPAND ([alphal, 2, 3)

These two lines are equivalent to:

[beta] = alalalblblbl|clclclalalalblblblc|c]c

31

The numele parameter can also be a sequence of numbers, if you need to specify a different number of copies of each
single element. For example:

[alpha] = alblc
[beta] = 11213
[gamma] = EXPAND ([alpha], 1, [betal)

These three lines are equivalent to:

[gamma] = alblblclclc

FILTER

This function creates a sequence taking elements from another sequence, filtering and grouping them using some rules.
The basic syntax is:

[name] = FILTER([name], filterl, filter2 ..filterN)

In the filterN parameters you can use wildcards: ? for any character, * for any characters, and use ranges of characters
within parenthesis (as an example, 1(0-9) matches a number from 10 to 19). For example, this script will print only
elements that start with a zero (four elements on eight):

[ALPHA] = 000/001]010]0111100]101]110J111
[BETA] = FILTER([ALPHA], 0%*)

FONT = ARIAL, 32, , #000000

TEXT = 1-{(BETA)}, [BETA], 0, 0, 100%, 100%

In the 1% parameter you can specify these additional flags:

the sorted/added elements are used to create the new sequence
(multiple, header) sort characters from an element in ascending order before comparing it to the filters
(multiple, header) sort characters from an element in descending order before comparing it to the filters
(multiple, header) add numbers from an element before comparing it to the filters
keep only the characters specified after this flag
discard all the characters specified after this flag
(multiple, header) counts the maximum occurrences of a character(s) in the same element
(multiple, header) counts the number of different characters(s) in the same element
(multiple, header) counts the maximum occurrences of specific character(s) in all positions on the previous
accepted elements
~ (header) counts all the occurrences of specific character(s) in all positions on the previous accepted elements
= (multiple, header) counts the maximum occurrences of specific character(s) in the same position on the
previous accepted elements
£ (header) counts the maximum occurrence of a straight of characters
° set the rule for evaluating a straight (if not specified, is used the ASCII sequence of letters/numbers)
% (multiple) replace a character(s) with another(s), all the couples are specified after this flag
! counts the distance (in characters) between two copies of the same characters, specified after this flag
& (header) the element is evaluated from his position within the sequence, starting from one
- (ALT + 0172) the condition (for including or not an element) is reversed
if an element is not included, a null string is added in its position
G the result is not padded with zeroes to the length of the longest element
(multiple, header) a permutation is applied to the starting characters in each element
: (multiple, header) a combination is applied to the starting characters in each element
1 (ALT + 0185, multiple, header) is used to specify the number of elements in each permutation/combination
a (ALT + 0170, header) every permutation/combination is concatenated, instead of creating new elements

>'\)$:ﬁ:@+/\vlm

You can combine multiple flags and use a space if you want to mix two similar functions, for example, a $ followed by
$$ can be coded as “$ $3”. The flags marked with header must be specified before the sequence, not after.

For example, this script will print only elements that contains one zero and two ones (three elements on eight):

[ALPHA] = 000]/001/010/0111100]1011110]111
[BETA] = FILTER(>[ALPHA], 011)

32

FONT ARIAL, 32, , #000000
TEXT = "1-{(BETA)}", [BETA], 0, 0, 100%, 100%

The flags marked with (multiple) in the above list (i.e.: > <+ $? ~ = 9% .) can be repeated, when you must consider
elements not as single characters, but as strings composed with more than one character. For example, the element
“0123” gives these results:

+ 6
++ 24
> 0123
>> 0123
< 3210
<< 2301

This is as example for utilization of “$” flag. First, a label is created with all the permutations (with repetitions) of four
elements from a set of five (a, b, ¢, d, and e), then, another label is created filtering only the occurrence of a three-of-a-
kind and four-of-a-kind:

prlal4d = alblcld]|e

[b] = FILTER(S[al, 3, 4)

FONT ARIAL, 64, , #000000

TEXT = 1-{(b)}, [bl, 0, 0, 100%, 100%

In this example, the same sequence is filtered to get only the labels that contains one or less repetitions of the same
character in the same position:

prlald = alblc|d]|e

[b] = FILTER(=[a], 0, 1)

FONT = ARIAL, 64, , #000000

TEXT 1-{(b)}, [bl, 0, 0, 100%, 100%

In this example of the replacement option (with the % option), the characters “a”, “d”, and “g” are replaced with the
numbers “17, “2”, and “3”:

[test _a] = abcldef|ghi
[test b] = FILTER(S[test a]%ald2g3)

The result sequence [test_b] is equal to:
lbc|2ef|3hi

Usually, the strings found and replaced with the % option are the same length, but you can specify a null character using
a ¢ symbol (for inserting it, type ALT + 0162). Example:

[test _a] = abcldef|ghi
[test b] = FILTER(Sc[test a]%%abxc¢dece)

Note the ¢ symbol added to disable the padding; the result sequence [test_b] is equal to:

xc|flghi

You can create a sequence of parameters with a “FOR=" keyword, for example, if you want ten numbers, instead of
adding all of them you can use a single parameter like “1-10FOR=-" (the 2" minus symbol is the position of the counter
in the result.

Instead of a parameter used as a filter, you can specify a “mask” (with the prefix “MASK="), that is used to apply the
filter only to some characters of the elements from the sequence; you specify a character that you want to consider with
a “1”, and a character to ignore with a “0”. For example, if you want to apply the rules only to the even characters of a

ten-character string, use this parameter: MASK=0101010101

If there are more than one rule in the 1% parameter, and if you specify a number before the mask keyword, that mask is
applied only to a single rule (1 for the 1% rule, 2 for the 2", and so on).

33

GRADIENTSEQ

This function creates a sequence of gradients, splitting one into several sections, the syntax is:
[name] = GRADIENTSEQ (gradient, number, element)

For example, with this line the program creates a sequence of three gradients:

[gradient] = GRADIENTSEQ (#000000#FF0000@0, 3)

If you do not specify the 3 parameter, the sequence contains number element; instead, it contains only the Nth
parameter, where N is the 3" parameter.

GROUP

This function takes all the elements in a sequence and removes all the duplicate elements, optionally, it can return a
count of all the elements adding the keyword COUNT in the 2" parameter. The syntax is:

[name] = GROUP (sequence, function)
For example:

[alpha] = alblalelc|clclalblfldl|e
[beta] = GROUP([alphal)

[gamma] = GROUP ([alpha], COUNT)

The two resulting sequences contain these values:

[beta] = alblcldlelf
[gamma] = 3]2|3]11]2]1
IMAGECREATE

This function can be used to create an image executing another nanDECK script, and it returns the name of the
(temporary) image file (note that only card #1 is saved). The syntax for this function is:

[name] = IMAGECREATE (script, paraml, param?2, param3, param4, paramb)
The optional parameters can be used in the called script as labels, named respectively [param1], [param2], [param3],

[param4], and [param5]. If you want to save a PNG image with a transparent color, you can specify it as a parameter, in
the format PNGTRANS=color (example, PNGTRANS=#FFFFFF).

INDEX
This function returns the position of a substring in a string, the syntax is:

[name] = INDEX (substring, string)

Note that both the parameters, or only one parameter, can be sequences, in this case the return is a sequence instead of a
single value.

INFO

This function returns a value that depends on the flag used, the syntax is:
[name] = INFO(flag)

The flag can be one of this:

S the filename of the current script
C the number of the current card
W card width (in current units)

34

H card height (in current units)

D card dpi
] name of the current units (cm/mm/inch)
JOIN

This function uses alternatively the elements from two (or more) sequences for building a new sequence, the syntax is:

[name] = JOIN (sequencel, sequence?2, ..sequenceNl)

The length of the new sequence is equal to the longest source sequence. This is an example:

[labell] = A|B
[label2] = 1121314
[label3] = JOIN([labell], [label2])

The 3 label will be evaluated as:

[label3] = Al |B2|A3|B4

JOINIF

This function adds elements to a sequence using a condition to choose from two other sequences, the syntax is:

[name] = JOINIF (sequence, valuel, condition, value2, sequence true, sequence
false)

Every parameter can be a single value or a sequence. The condition can be one of these symbols:

= equal

< different

> major

< minor

>= major or equal
<= minor or equal
@ contained

not contained

This is an example:

[label] = JOINIF(A|B|C, 1]2]3, <=, 2, D|E|F, X)

The label will be evaluated as:

[label] = AD|BE|CX

LABELRANGE

This function creates a range, using elements from a sequence. The syntax for this function is:

[name] = LABELRANGE (sequence, value, offset)

If you specify the optional value parameter, the range is created with only the cards matching the value parameter

position (wildcards * and ? are accepted). If you do not specify the value parameter, the default element from a
sequence is considered “1”. The offset parameter, if specified, will be added to every card of the range.

For example:

[sequence] = 0110|001

[label] = LABELRANGE ([sequence])
Result:

35

[label] = "2,3,6"
The item parameter can also accept these operators (in the format operatorvalue):

= the item’s position from the sequence is included if it is equal to the value (this operator can be omitted)

<> the item’s position from the sequence is included if it is different from the value

> the item’s position from the sequence is included if it is greater than the value

< the item’s position from the sequence is included if it is smaller than the value

>= the item’s position from the sequence is included if it is greater or equal to the value
<= the item’s position from the sequence is included if it is smaller or equal to the value
@ the item’s position from the sequence is included if the value is contained in it

the item’s position from the sequence is included if the value is not contained in it
For example:

[sequence] = 1|21314|5/6]71819]10

[label] = LABELRANGE ([sequence], >=5)

Result:

[label] = "5,6,7,8,9,10"

LABELSTRING

This function creates a string with elements taken from a sequence. The syntax for this function is:

[name] = LABELSTRING (sequence, number)

Without the optional number parameter, the result is a single string, taken from concatenating every element of the
sequence. If you specify a number as 2™ parameter, for every n™ element a new element of the sequence is created. For
example:

[sequence] = A|B|IC|D|E|F
[label] = LABELSTRING ([sequence])

These two lines are equivalent to:

[label] = ABCDEF

Another example:

[sequence] = A|B|IC|D|E|F

[label] = LABELSTRING ([sequence], 2)

Result:

[label] = AB|CDI|EF

LABELSUB

This function extracts a sequence from another, taken only the elements in a range, the syntax is:
[name] = LABELSUB (sequence, "range")

For example:

[sequence] = LABELSUB (alpha|betalgamma|delta, "1,3-4")
Result:

[sequence] = alphalgammal|delta

36

LENGTH

This function creates a new sequence with the lengths of the elements of the sequence in the 1% (and only) parameter,
the syntax is:

[name] = LENGTH (sequence)

For example:

[sequence] = ABC|DE|F|GH|IJK|LMNO
[label] = LENGTH ([sequence])
Result:

[label] = 321112314

Note that letters outside the standard codepage read from a spreadsheet are converted to HTML codes and therefore
with a length longer that one, therefore if you need the correct length, you should before read the spreadsheet with a
LINKUNI=OFF line (see page 142).

MEASURE

This function gives as result the distance (in the current units) from a point specified in the parameters and following a
direction until a different color is found. The syntax is:

[name] = measure (pos x, pos y, direction)
The direction parameter can be one of the following:

UP

DOWN

LEFT
RIGHT

PDFMERGE

This function creates a new PDF file, you can specify a file or a sequence of files as sources, with related page ranges
(the syntax for a range is, for example, "1-10,15,18,20-30"), if the result file is not already present, it is created
(otherwise, it is overwritten). This function is the equivalent of the MERGEPDF directive (see page 145). The syntax is:
[name] = pdfmerge ("result file", "source file", "source range'", rotation)

Example (a loop to split a pdf into single pages):

[pdfl%, (a), 1, PDFPAGES (source.pdf) = PDFMERGE (split(a).pdf, source.pdf, (a))
PDFPAGES

This function returns the number of the pages contained in a PDF file. The syntax is:

[name] = pdfpages("filename")

PRODUCT

This function combines two (or more) sequences, in the result every element of the first sequence is combined with
every element of the second sequence (and so on), the syntax is:

[name] = PRODUCT (sequencel, sequence2, ..sequenceN)
The length of the new sequence is equal to the product of the length of all source sequences. This is an example:

[labell] = A|B

37

[label2] = 1121314
[label3] PRODUCT ([labell], [label2])

The 3 label will be evaluated as:

[label3] = A1 |A2|A3|A4|B1|B2|B3|BR4
RANGEADD

This function combines several ranges in one, the syntax is:
[range] = RANGEADD ("rangel", "range2", .."rangeN'")
For example:

[rangel] = "1-3"

[range2] = "2-4"

[range3] = "8-10"

[range] = RANGEADD ([rangel], [range2], [range3])
Result:

[range] = "1-4,8-10"

RANGECOUNT

This function returns the number of cards in a range, the syntax is:

[number] = RANGECOUNT ("range")

For example:

[number] = RANGECOUNT ("1,4-6,10-15")
Result:

[number] = 10

RANGEINS

This function takes a range (1% parameter) and add every Nth position (2" parameter) another range (3" parameter),
optionally the 4™ parameter specifies how many times. The syntax is:

[range] = RANGEINS ("range", position, "range", times)
For example:

[range] = RANGEINS("1-10", 3, "11-12")

Result:

[range] = "1,2,3,11,12,4,5,6,11,12,7,8,9,11,12,10"
RANGELABEL

This function converts a sequence of numbers into a range:

[label] = RANGEREM/([sequencel])

For example:

[seq] = 112|3]10

38

[range] RANGELABEL ([seq])

Result:

[range] = "1,2,3,10"

RANGEMERGE

This function creates a new range mixing the cards from two or more ranges:

[range] = RANGEMERGE ("rangel", "range2", .."rangeN")

For example:

[range] = RANGEMERGE (1-5,6-10)

Result:

[range] = "1,6,2,7,3,8,4,9,5,10"

RANGEMUL

This function creates a new range from pairs of range/number of repetitions of that range:
[range] = RANGEMUL ("rangel", numl, "range2", num2, .."rangeN'", numN)
For example:

[range] = RANGEMUL(1,2,3,4)

Result:

[range] = "1,1,3,3,3,3"

RANGEREM

This function extracts a sub-range from another range, this is the syntax:
[range] = RANGEREM ("rangel", "range2", .."rangeN")

This directive removes the ranges range2, ... rangeN from rangel.

For example:

[rangel] = "1-10"

[range2] = "3,4"

[range3] = "7-9"

[range] = RANGEREM([rangel], [range2], [range3])
Result:

[range] = "1-2,5-6,10"

RANGESUB

This function extracts a sub-range from another range, this is the syntax:

[range] = RANGESUB ("range", start, number)

The sub-range starts from the element specified by the start parameter and is composed of number elements. If the
number parameter is missing (or equal to zero) the sub-range goes to the end of the initial range; if the start parameter is

39

equal to zero, the sub-range starts from the last element taken with another RANGESUB function (or from the start of
the initial range), in a behavior like that implemented with AUTORANGE function.

For example:

[rangel] = "1-10"
[range] = RANGESUB([rangel], 3, 4)

Result:
[range] = "3-6"

REPEAT

This function returns a string composed repeating the 1 parameter several times equal to the 2" parameter. The syntax
is:

[name] = REPEAT ("string", number)

REPLACE

This function replaces in a string (or a sequence) all instances of a substring with another. The syntax for this function
is:

[name] = REPLACE ("string", "from", "to", flags)
You can choose one of these flags:

the replacement is made case-sensitive (the default)

the replacement is made case-insensitive

every pair of from/to texts are applied to every element of the 1 parameter (the default)
the Nth pair of from/to texts are applied only to the Nth element of the 1% parameter

ROUND

This function returns the 1t parameter rounded, the 2" parameter specify the number of decimal digits (if not specified,
it is zero, if it’s a negative number, the rounding is by power of tens), the 3™ parameter is a keyword that specify if the
rounding is UP, or DOWN (if you don't specify it, the rounding is down when the rounded digit is 4 or less, and up if
it's 5 or more). The syntax is:

wz—0

[name] = ROUND (value, precision, keyword)

SAVELABEL

This function saves the content of a label (or more than one label) into a CSV text file or a spreadsheet file (if the
extension of the filename is .xIs or .xlIsx). The syntax for this function is:

[name] = SAVELABEL ("filename", labell , label2, ..labelN)
The result label [name] contains the filename. Note: do not use the [] in the label parameters.

SCHEMA

This function creates a sequence label with multiple elements taken from another sequence, to be used to create
structures like tables, when the number of sub-elements may change. The syntax for this function is:

[name] = SCHEMA (sequence, number, header, footer, bodyl, body2, ..bodyN)

Each element in the sequence may contain multiple sub-elements, each one delimited by an underscore “_”’; each
element contained in the resulting sequence is composed by the header, one body for each element of the starting
sequence, and one footer; in these resulting elements you can replace parameters with sub-elements taken from the
starting sequence; the syntax for these parameters is ((N)), and the number of sub-elements that must be considered

40

present in one of the body element of the resulting sequence is defined by the 2™ parameter (number) of the function.
For example:

[data] = "one two|three four five six"
[result] = SCHEMA ([data], 2, "<table>", "</table>", "<tr> <td> ((1)) </td> <td>
((2)) </td> </tr>")

The [result] label is equal to (spaces are added to increase readability):
[result] = <table><tr> <td> one </td> <td> two </td> </tr></table>|<table><tr>

<td> three </td> <td> four </td> </tr> <tr> <td> five </td> <td> six </td>
</tr></table>

You can specify multiple body parameters, that are use one for each sequence element, i.e., if you specify two body
parameters, one is used for odd elements, and the other for even elements.

STRINGLABEL
This function creates a sequence label with elements taken from a string. The syntax for this function is:

[name] = STRINGLABEL ("string", length)

The optional length parameter sets the number of characters taken for each element of the sequence. If omitted, the
length is one character. For example, these two lines are equivalent:

[label] = STRINGLABEL ("This is a test")
[label]l = "T|h|ils]| [|ils]| lal |tlels|t"
STRINGSUB

This function extracts a substring from a string, or a sequence of substrings from a sequence of string. The syntax for
this function is:

[name] = STRINGSUB("string", start, length)

If the length parameter is omitted, the substring is extracted until the end of the string.

TAGFRAME

This function can be used to associate a string to a frame (to be used as a color for VORONOI directive, see page 175),
or to create a label that contains the strings associated with a frame. You can also specify a list of frames using the *
symbol (and the resulting label will be a sequence). The syntax for this function is (when used to create a label, do not
use the tag parameter):

[name] = TAGFRAME (frame, tag)

TOKENIZE

This function extracts a substring from a string, using a separator that slices the string into several tokens, and a number
that specify the single token extracted. The syntax for this function is:

[name] = TOKENIZE ("string", number, separator)

If the separator is not specified, is assumed to be equal to “[” (pipe), note that is the same separator for the elements in a
sequence. For example:

[result] = TOKENIZE ("Alpha-Beta-Gamma", 2, -)

The [result] label would be equal to “Beta”

41

TOKENIZESEQ

This function extracts a sequence from another sequence, using a separator that slices each element of that sequence
into several tokens, and a number that specify which tokens are extracted; all the tokens are concatenated in the result
sequence. The syntax for this function is:

[name] = TOKENIZESEQ ("string", number, separator)

For example:

[result] = TOKENIZESEQ ("Alpha-Beta-Gamma|Delta-Epsilon-Zeta|Eta-Theta-Iota",2,-)
The [result] label would be equal to “Beta|Epsilon|Theta”

TRANSLATE

This function replaces in a sequence (specified in the 1% parameter) all the elements found in another sequence

(specified in the 2" parameter) with elements taken from another sequence (specified in the 3™ parameter). The syntax
is:

[label] = TRANSLATE (sequence, sequence key, sequence value)

For example, this script:

[test] = x|ylx|lw|x|ylylz
[from] = x|y|z

[to] = alblc

[

result] = TRANSLATE ([test], [from], [to])
Gives this sequence as a result:

[result] = alblallalblblc

42

Frames

A frame is a special label, used when you need to identify a rectangular area used for placing a graphical content. A
frame is defined used this syntax:

<name> = position x, position y, width, height
And can be used for example with a RECTANGLE directive:

RECTANGLE = 1, <name>, #000000

This is a behavior that can be done also with a label, but in a frame, you can add an alignment and a specific size, with
this syntax:

<name, alignment, width, height>

The “alignment” can be a flag from this list:

TL top-left
TC top-center
TR top-right

CL center-left
CcC center-center
CR center-right
BL bottom-left
BC bottom-center
BR bottom-right

An example with all these nine alignments:

<frame> =1, 1, 4, 7

FONT = Arial, 16, , #FFFFFF, #0000FF

RECTANGLE = 1, <frame>, #CCCCFF
TEXT = 1, "TL", <frame, TL, 1>, CENTER, CENTER

=
~

TEXT = 1, "TC", <frame, TC, 1, 1>, CENTER, CENTER
TEXT = 1, "TR", <frame, TR, 1, 1>, CENTER, CENTER

TEXT = 1, "CL", <frame, CL, 1, 1>, CENTER, CENTER

TEXT = 1, "cCc", <frame, CC, 1, 1>, CENTER, CENTER E
TEXT = 1, "CR", <frame, CR, 1, 1>, CENTER, CENTER

TEXT = 1, "BL", <frame, BL, 1, 1>, CENTER, CENTER Figure 1
TEXT = 1, "BC", <frame, BC, 1, 1>, CENTER, CENTER

TEXT = 1, "BR", <frame, BR, 1, 1>, CENTER, CENTER

Result: Figure 1

One between width and height can be expanded to the full extent of frame’s width or height, using this syntax and one
of these alignments for width:

<name, alignment, height>

TW top aligned, full width
CWwW center aligned, full width
BW bottom aligned, full width

Example:

<frame> =1, 1, 4, 7

FONT = Arial, 16, , #FFFFFF, #0000FF

RECTANGLE = 1, <frame>, #CCCCFF

TEXT = 1, "TW", <frame, TW, 1>, CENTER, CENTER
TEXT = 1, "CW", <frame, CW, 1>, CENTER, CENTER Figure 2

TEXT = 1, "BW", <frame, BW, 1>, CENTER, CENTER
Result: Figure 2

m Q =

43

This syntax and these alignments are used for a full height:

<name, alignment, width>

HL full height, left aligned
HC full height, center aligned
HR full height, right aligned

<frame> =1, 1, 4, 7 HL BHCBHR
FONT = Arial, 16, , #FFFFFF, #0000FF

RECTANGLE = 1, <frame>, #CCCCFF

TEXT = 1, "HL", <frame, HL, 1>, CENTER, CENTER

TEXT = 1, "HC", <frame, HC, 1>, CENTER, CENTER

TEXT = 1, "HR", <frame, HR, 1>, CENTER, CENTER Figure 3
Result: Figure 3

Another type of syntax can be used to extract only a position (useful with lines):

<name, alignment>

PTL top-left

PTC top-center
PTR top-right

PCL center-left
PCC center-center
PCR center-right
PBL bottom-left
PBC bottom-center
PBR bottom-right

<frame> =1, 1, 4, 7
RECTANGLE = 1, <frame>, #CCCCFF
LINE = 1, <frame, PTL>, <frame, PBR>, #FF000O,

LINE = 1, <frame, PTR>, <frame, PBL>, #FF000O,
Result: Figure 4

0.2 Figure 4
0.2

Instead of using two frames, you can also combine two alignments of this type in a single frame, for example, with this
script the result is the same of the above example:

<frame> =1, 1, 4, 7

RECTANGLE = 1, <frame>, #CCCCFF

LINE = 1, <frame, PTL, PBR>, #FF0000, 0.2

LINE = 1, <frame, PTR, PBL>, #FF0000, 0.2

Instead of using a size (width or height) in cm, you can use a fraction of the whole frame size, using a
number followed by “%%” (instead, a single “%” gives you a size equal to a fraction of the whole

card). For example: L=

<frame> =1, 1, 4, 7
FONT = Arial, 16, , #FFFFFF, #O0O0OOFF
RECTANGLE = 1, <frame>, #CCCCFF
TEXT = 1, "TL", <frame, TL, 50%%, 50%%>, CENTER, CENTER
Result: Figure 5
Figure 5

Tip: you can view a list of frames, their contents, and choose one of them from a list, clicking on the button “Insert”
and choosing the menu voice “Frame”.

With these syntaxes, you can align a sub-frame starting from the last sub-frame, in the four directions:

TS top aligned, full width
BS bottom aligned, full width

44

SL left aligned, full height
SR right aligned, full height

<frame> =1, 1, 4, 7

FONT = Arial, 16, , #FFFFFF, #0000FF

TEXT = 1, TS1l, <frame, TS, 1>, CENTER, CENTER
FONT = Arial, 16, , #FFFFFF, #O00FF0O

TEXT = 1, TS2, <frame, TS, 1>, CENTER, CENTER
FONT = Arial, 16, , #FFFFFF, #FF0000

TEXT = 1, TS3, <frame, TS, 1>, CENTER, CENTER
FONT = Arial, 16, , #000000, #FFFFOO

TEXT = 1, TS4, <frame, TS, 0>, CENTER, CENTER
Result: Figure 6

In this example, the first frame can also be referenced with TW, and the result did not change.

Figure 6

If you specify a zero as the width/height of the element, it fills all the available space (the 4" frame in this example).

With these flags, the program extracts three coordinates from the four of a frame, useful when using the TRIANGLE

directive (see page 172), for a shape that fills half of the frame:

HTL top left, top right, and bottom left
HTR top left, top right, and bottom right
HBL top left, bottom left, and bottom right
HBR top right, bottom left, and bottom right

For example:

<frame> =1, 1, 4, 7

RECTANGLE = 1, <frame>, #CCCCFF
TRIANGLE = 1, <frame, HTL>, #FF0000
Result: Figure 7

These flags also give three coordinates:

TTL anarrowhead with the point to the top-left corner of the frame

TTC anarrowhead with the point to the center of the top side of the frame
TTR an arrowhead with the point to the top-right corner of the frame

TCL anarrowhead with the point to the center of the left side of the frame
TCR an arrowhead with the point to the center of the right side of the frame
TBL an arrowhead with the point to the bottom-left corner of the frame

TBC an arrowhead with the point to the center of the bottom side of the frame
TBR an arrowhead with the point to the bottom-right corner of the frame

For example:

<frame> =1, 1, 4, 7
RECTANGLE = 1, <frame>, #CCCCFF

TRIANGLE = 1, <frame, TTC>, #FF0000
Result: Figure 8

Figure 7

Figure 8

With several functions, you can create groups of frames, and referencing them with wildcards (the list is after this

chapter):

* a group of any characters
? any one character
~ a random frame from a group

! the first frame from a group, the frame is then deleted from the frame group (instead of the first frame, a

[T

random frame is selected if used with the symbol)

/ normally, the frames created with a function are added to the existing ones; with this character in the frames’

name, the definition rewrites the previous frames (the name is considered without ““/”)

° this is not a wildcard used in a frame name, but instead is used when the frame number is needed in a standard

expression (with “{” and “}” delimiters)

45

sl this is not a wildcard used in a frame name, but instead is used when the frame name is needed in a text
(without “{” and “}” delimiters).

Finally, in a frame name with ! or ~ wildcards, you can specify more than one frame adding a
number before the symbol. For example, if you want three random green boxes from a grid, three
blue and three red you can write:

[base] = FRAMEBOX (0, 0, 6, 9, 1, 1, E)
RECTANGLE = 1, <3!~base*>, #00FF0O0
RECTANGLE = 1, <3!~base*>, #0000FF
RECTANGLE = 1, <3!~base*>, #FF0000

GRID = 1, 0, 0, 6, 9, #000000, 0.1, 6, 9
Result: Figure 9

Note: without the “!”” symbol, the randomized frames may overlay themselves. Instead, without
the “~” symbol, the frames are extracted from the start of the group. For example, with this script:

Figure 9

[base] = FRAMEBROX (0, 0, 6, 9, 1, 1, E)
RECTANGLE = 1, <3!base*>, #00FF0O0
RECTANGLE = 1, <3!base*>, #0000FF ?
RECTANGLE = 1, <3!base*>, #FF0000

GRID = 1, 0, 0, 6, 9, #000000, 0.1, 6, 9
Result: Figure 10

Figure 10

46

Frame functions

FRAMEBAR

This function creates a list of frames (see page 43) arranged in a line. The syntax for this function is:

[name] = FRAMEBAR (pos x1, pos yl, pos x2, pos y2, frame width, frame height,
number, zoom)

The frames are created with a name composed from the [name] and a number, the number goes from “1” to the 7%
parameter.

Example:
[bar] = FRAMEBAR(O, O, 6, 6, 1, 1, 5)

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~)
symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and
referencing the current frame’s number with the degree (°) symbol (in an expression) or the current frame’s name with
the micro () symbol (in a text).

The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change).

FRAMEBEZIER

This function creates a list of frames (see page 43) arranged in a Bezier curve. The syntax for this function is:

[name] = FRAMEBEZIER (pos x1, pos yl, handle x1, handle yl, handle x2, handle y2,
pos x2, pos y2, frame width, frame height, number, zoom)

The frames are created with a name composed from the [name] and a number, the number goes from “1” to the 11"
parameter.

Example:
[bezier] = FRAMEBEZIER(O, 0, 3, 0, 3, 6, 6, 6, 1, 1, 10)

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~)
symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and
referencing the current frame’s number with the degree (°) symbol (in an expression) or the current frame’s name with
the micro (W) symbol (in a text).

The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change).

FRAMEBOX

This function creates a list of frames (see page 43), based on a rectangular grid. The syntax for this function is:

[name] = FRAMEBOX (pos x, pos y, width, height, frame width, frame height, flags,
zoom x, zoom y)

The last parameters (zoom x and zoom y) are optional, if not specified are equal to 100 (no zoom); if you want half
sized frames, you can specify 50, if you want double sized frames, the value is 200, and so on. The zoom can be
different between horizontal and vertical values.

The frames are created with a name composed from the [name] and the flag in the 7™ parameter. You can use these
flags:

letters

numbers

zero-padded numbers

coordinates

coordinates with letters and numbers

coordinates with letters and numbers (numbers are reversed)

moO ovzr

47

. dot separator for C flag

- minus separator for C flag

underscore separator for C flag

add only “white” squares in a chessboard
add only “black” squares in a chessboard

W=

With these flags, coordinates are added to each frame name:

A,B,C,D...

1,2,3,4...

01, 02, 03, 04...
0101,0102,0103...0201,0202,0203...
A1,A2,A3...B1,B2,B3...
1.1,12,13..2.1,2.223...

- 1-1,1-2,1-3...2-1,2-2,2-3....

11,1 213..212.22 3...

coomovzr

If you did not specify any flag, the frames are created with the same name.
Example:
[box] = FRAMEBOX (0, 0, 4, 3, 1, 1, C)

The resulting frames will be:

<BOX1l 1> =
<BOX1l 2> =
<BOX1 3> =
<BOXZ2 1> =
<BOX2 2> =
<BOX2 3> =
<BOX3 1> =
<BOX3 2> =
<BOX3 3> =
<BOX4 1> =
<BOX4 2> =
<BOX4 3> =

~ 0~
~ 0~
~ 0~

~N N N N~ O~
~ N N N~ 0~
~N N N N~ 0~

WWWNNNRFRRP P OOO
NHFONRPRONRFONRE O
PR PR R R RPR R R R R
PR PR R R RPR R R R R

N N N S~ 0~
~N N N S~ 0~
~N N N N~ 0~

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~)
symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and
referencing the current frame’s number with the degree (°) symbol (in an expression), or the current frame’s name with
the micro (W) symbol (in a text). For example, if you want to split an image into 4 images (in a 2 x 2 pattern) and save
them, you can use this script:

[a] = FRAMEBOX (0, 0, 6, 9, 3, 4.5, N)

IMAGE = 1, "c:\my images\earth.jpg", 0, 0, 6, 9, 0
SAVE = 1, "c:\my images\earth {°}.jpg", <a*>

FRAMECLOCK

This function creates a list of frames (see page 43) arranged in a circle (like a clock’s quadrant). The syntax for this
function is:

[name] = FRAMECLOCK (pos x, pos vy, width, height, frame width, frame height,
number, angle, zoom, start, end, factor)

The frames are created with a name composed from the [name] and a number, the number goes from “1” to the 7%
parameter.

Example:

[clock] = FRAMECLOCK(O, O, 4, 4, 1, 1, 8)

48

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~)
symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and
referencing the current frame’s number with the degree (°) symbol (in an expression) or the current frame’s name with
the micro () symbol (in a text).

The angle optional parameter is used if you want to rotate all the frames of a precise degree.

The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change).

The start and end optional parameters are used if you want to draw only an arc instead of full circle (both are degrees).
The factor optional parameter, if not zero, creates a spiral of frames, instead of a circle (positive for clockwise spirals,
negative for anti-clockwise spirals).

FRAMECOUNT

This function creates a label with the number of frames from a single frame name, or a list of frame names. The syntax
for this function is:

[name] = FRAMECOUNT (framel, frameZ2, ..frameN)

In the [name] parameter you can use wildcards (? for any one character, * for a group of any characters).

FRAMEDISK

With this function, you can define a group of frames, specifying two frames, and including all the frames in the circle
drawn used the first frame as a center and the latter as a radius. It works with frames created from FRAMEBOX and
FRAMEHEX functions. The syntax is:

[diskgroup] = FRAMEDISK (frame center, frame radius)

For example:

CARDSIZE = 18, 20

HEXGRID = 1, 0, O, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX (0O, 0, 18, 20, 1, E)

[diskgroup] = FRAMEDISK (basee6, baseed)

POLYGON = 1, <diskgroup>, 6, 90, #FF0000

FRAMEHEX

This function creates a list of frames (see page 43), based on a hexagonal grid. The syntax for this function is:
[name] = FRAMEHEX (pos x, pos Yy, width, height, hex size, flags, zoom x, zoom y)

The last parameters (zoom x and zoom y) are optional, if not specified are equal to 100 (no zoom); if you want half
sized frames, you can specify 50, if you want double sized frames, the value is 200, and so on. The zoom can be
different between horizontal and vertical values.

The frames are created with a name composed from the [name] and the flag in the 6™ parameter. You can use these
flags:

letters

numbers

zero-padded numbers

coordinates

coordinate with letters + numbers

dot separator for C flag

minus separator for C flag

underscore separator for C flag

outer frame (the default, it creates a frame suitable for drawing a circle outside the hex)
inner frame (it creates a frame suitable for drawing a circle inside the hex)

uses a pattern for obtaining “easy to cut” hexagons (“trihexagonal” tiling)

the hexes are arranged in horizontal lines instead of vertical

the line (or the column if the A flag is specified) starts with a shifted hex

the 51" parameter is read as the diameter of the hex, instead of the side of the hex (the default)

moO v zZzr

Tvw>»X—Ool

49

T the last row (or column) of shifted hexes is not drawn
With these flags, coordinates are added to each frame name:

A,B,C,D...

1,2,3,4...

01,02, 03, 04...
0101,0102,0103...0201,0202,0203...
A1,A2,A3...B1,B2,B3...
1.1,12,1.3...2.1,2.22.3...

- 1-1,1-2,1-3...2-1,2-2,2-3....

11,1 213..2.1222 3.

ocoomovozr

If you did not specify any flag, the frames are created with the same name.

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~)
symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use and
referencing the current frame with the degree (°) symbol (in an expression) or the current frame’s name with the micro
(1) symbol (in a text). For example, this script draws a circle on a random hex of the first column of a grid:

CARDSIZE = 18, 20
HEXGRID = 1, O, 0, 18, 20, 1, , #000000, EMPTY, 0.1

[base] = FRAMEHEX(O, 0, 18, 20, 1, E)
ELLIPSE = 1, <~basea*>, #FF0000

FRAMEIMAGE

This function creates a list of frames (see page 39), taking only the frames from a source list that contain more than a
percentage of a color (or a similar color) read over a reference image file. The syntax for this function is:

[name] = FRAMEIMAGE (frames, "image file", color, threshold, percentage)

If not specified, the threshold parameter is considered zero, otherwise it is the difference between the color specified as
3 parameter and the colors read from the image; if not specified, the percentage parameter is considered 50. For
example:

[list] = frameimage (frame*, "europe.png", #000000)

In this case, all the frames that start with “frame” are drawn over the “europe.png” file and are considered only those
who are black over the 50% of their area.

FRAMELINE

With this function, you can define a group of frames, specifying a first frame, a last frame, and including all the frames
in the shortest path between the two. It works with frames created from FRAMEBOX and FRAMEHEX functions. The
syntax is:

[linegroup] = FRAMELINE (frame start, frame end)

For example:

CARDSIZE = 18, 20

HEXGRID = 1, 0, O, 18, 20, 1, , #000000, EMPTY, 0.1

[base] = FRAMEHEX (0, 0, 18, 20, 1, E)

[linegroup] = FRAMELINE (baseal, baseh9)
POLYGON = 1, <linegroup>, 6, 90, #FF0000

FRAMELIST

With this function, you can define a group of frames, and use a single command on all of them. The syntax is:

[group] = FRAMELIST (framel, frame2, ..frameN)

50

You can specify a single frame for parameter, or use another group of frames, or specify a range of frames using the
syntax frameX..frameY (to add every frame with that name and numbered between X and Y). Before the name of the
frame, you can use these flags:

£ the frames are reversed on each line (from top to bottom, from right to left)

$ the frames are in bidirectional order (from left to right in the first row, from right to left in the next row, and so
on...)

% the frames are listed in vertical order (from left to right, from top to bottom)

%E the frames are reversed on each vertical line (from left to right, from bottom to top)

%$ the frames are in bidirectional vertical order (from top to bottom in the first column, from bottom to top in the
next column, and so on...)

- the order with the frames in a group are added is completely reversed (it can be added to each of the above
combinations

After the name of the frame, you can specify how many frames are skipped with the syntax frame&N where N is the

number of the frames to skip.

For example, this script draws three circles on the first three hexes in the top-left corner of a grid:

CARDSIZE = 18, 20

HEXGRID = 1, 0, O, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX (O, 0, 18, 20, 1, E)

[group] FRAMELIST (baseal, basea?2, basebl)

ELLIPSE = 1, <group>, #FF0000

FRAMEMAZE

This function reads a list of edge frames as 1% parameter (created with a FRAMEPER function), and creates another list
of edge frames, arranged as a maze. The 2" and 3™ parameters are the width and height of the rectangle defined by the
edge frames. You can specify the coordinates of the starting cell (as 4™ and 5™ parameter), otherwise it is randomly
selected (this also when set to zero); the ending cell is selected as the farthest from the starting one. You can specify a
non-rectangular shape for the maze using a list of frames as 7" parameter. The syntax is:

[newframe] = FRAMEMAZE (frames, width, height, X start cell, Y start cell, flags,
frames)

You can use these flags in the 6 parameter:

S is created a group of frames for the solution
M is created a group of frames with the sequence used in the creation of the maze
E the exit is along the edge of the maze

At the end of the process other two frames are created, one for the starting cell (with postfix start) and one for the
ending cell (with postfix end); if the S flag is used is created also a group of frames for the solution (with postfix
solution), i.e. the path from the starting to the ending cell; if the E flag is specified is created also two frames for the
edge of the starting cell (with postfix startedge) and for the ending cell (with postfix endedge); if the M flag is
specified is created also a group of frames with the sequence used for creating the maze (with postfix map).

This example creates two cards, one with the maze, starting and ending cells, and one that adds the solution:

[x] = 20

[yl = 20

CARDSIZE = [x], [v]

[cell] = FRAMEBOX (0, O, [x], I[v], 1, 1)
[edge] = FRAMEPER (cell, 0.1)

[maze] = FRAMEMAZE (edge, [x], [y]l, 0, 0, S)

RECTANGLE = 2, <mazesolution>, #FFFFO0O
ELLIPSE = 1-2, <mazestart>, #FF0000
ELLIPSE = 1-2, <mazeend>, #00FF0O
RECTANGLE = 1-2, <maze>, #0000FF

FONT = Arial, 10, T, #000000

TEXT = 2, {°}, <mazesolution>

51

FRAMEMELD

With this function, you create a new frame, merging several others. The syntax is:

[newframe] = FRAMEMELD (framel, frame2, ..frameN)

For example:

CARDSIZE = 18, 20
HEXGRID = 1, O, O, 18, 20, 1, , #000000, EMPTY, 0.1

[base] = FRAMEHEX (O, 0, 18, 20, 1, E)
[group] = FRAMEDISK (basef3, basefl)
POLYGON = 1, <group>, 6, 90, #FF000O0
[meld] = FRAMEMELD (basedl, basehb)

ELLIPSE = 1, <meld>, #0000FF, EMPTY, 0.2

FRAMEMOSAIC

This function reads all the images in a folder, arrange them in a rectangle, and creates a new group of frames, one for
each image. If the images fill more than one instance of that rectangle, you can use a page parameter to specify which
rectangle is drawn from all the possible choices. The frames are created with a name composed from the [name] and a
number, the number starts from “1”. The syntax for this function is:

[newframe] = FRAMEMOSAIC ("folder", pos x, pos vy, width, height, page, flags,
zoom)

Parameters:

"folder": a folder to search, eventually with a file pattern
position x: horizontal position (in cm)

position y: vertical position (in cm)

width: width of the rectangle (in cm)

height: height of the rectangle (in cm)

page: if not specified, is equal to 1

flags: one or more of these flags:

H the schema is mirrored horizontally
\ the schema is mirrored vertically
S the images are read also in the subfolders

zoom: if not specified, is equal to 100

This function creates also a label named namePAGES (where name is the frames’ prefix) with a value equal to the
number of pages resulting.

FRAMENET

This function creates a new group of frames, composed with all possible couple from two groups of frames, eventually
including only these contained with a range of distances. The syntax is:

[newframe] = FRAMENET (frame group 1, frame group 2, min distance, max distance,
flags)

In the parameter flags, you can use one or more of these flags:

52

L the frame(s) added is from the center of the starting frame to the center of the ending frame (it can be used for
drawing lines), this is the default option

the frame(s) added is the ending frame

the frame(s) added are only from the 1% quadrant (top-right)

the frame(s) added are only from the 2" quadrant (bottom-right)

the frame(s) added are only from the 3" quadrant (bottom-left)

the frame(s) added are only from the 4" quadrant (top-left)

AWN R Z

If you did not specify any of flags 1234, the frames are taken from all the starting lists.
For example, this is a net from all the points in a rectangular grid, with a maximum distance of four units:
[net0] FRAMEBOX (0, 0, 6, 9, 1, 1, L)

[netl] = FRAMENET (net0*, netO*, 0, 4)
LINERECT = 1, <netl>, #000000

Another example, this is a “star map”, connecting ten random “planets” in a hexagonal grid with a distance from two to
four units:

[map0] = FRAMEHEX (O, O, 6, 9, 0.1, L, 50%)
[mapl] = FRAMELIST(10!~map0¥*)
[map2] = FRAMENET (mapl, mapl, 2, 4)

LINERECT = 1, <map2>, #000000
ELLIPSE = 1, <mapl>, #0000FF

FRAMEPATH

With this function, you can define a group of frames, specifying a first frame, a last frame, and including all the frames
in the shortest path between the two, and optionally remove a list of frames (specified in the 4" parameter) from the
result. It works with frames created from FRAMEBOX. The syntax is:

[pathgroup] = FRAMEPATH (frame start, frame end, flags, exclusions)
In the parameter flags, you can use one or more of these flags:

add framel to the result group

add frame2 to the result group

delete the frames used for the path

delete the frame used as 1% parameter (start frame)
delete the frame used as 2" parameter (end frame)
use the shortest path

I mwungrm

For example:

[grid] = FRAMEBROX (0O, O, 6, 9, 0.5, 0.5, C
[pathl] = FRAMEPATH(grid0203, gridllle, D
[path2] FRAMEPATH (grid0203, gridll116, D
[path3] = FRAMEPATH (grid0203, gridllle, D
RECTANGLE = 1, <grid*>, #0000FF, #FF0000, 0.1
ELLIPSE = 1, <pathl>, #AAAAAA, #00FF00, 0.05
ELLIPSE = 1, <path2>, #AAAAAA, #0000FF, 0.05
ELLIPSE 1, <path3>, #AAAAAA, #FF0000, 0.05

—_ — — —

FRAMEPER

This function creates a new group of frames, adding for each starting frame the four frames from its sides (the starting
frame is considered rectangular). The syntax is:

[newframe] = FRAMEPER (frame group, width, flags, margin)

The width parameter specifies the width of the left and right frames, and the height of top and bottom frames. In the
parameter flags, you can use one or more of these flags:

53

a frame for the top side of the rectangular frame is added to the result

a frame for the right side of the rectangular frame is added to the result

a frame for the bottom side of the rectangular frame is added to the result

a frame for the left side of the rectangular frame is added to the result

with this flag the frames are created in vertical order (instead of a horizontal order)

with this flag the frames are created with individual names: nameN (top), nameE (right), nameS (bottom),
nameW (left)

Z<hAhWNOPR

If you did not specify any of flags 1234, all the four frames are added. The margin parameter specifies how much space
is added to the left and to the right (for horizontal sides) and to the top and to the bottom (for vertical sides) of the
frame.

FRAMERECT

With this function, you can define a group of frames, specifying two frames, and including all the frames in the
rectangle drawn used the first frame as top-left and the latter as bottom-right. It works with frames created from
FRAMEBOX and FRAMEHEX functions. The syntax is:

[rectgroup] = FRAMERECT (frame start, frame end)

For example:

CARDSIZE = 18, 20

HEXGRID = 1, 0, O, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX (O, 0, 18, 20, 1, E)

[rectgroup] = FRAMERECT (baseb3, basei®)

POLYGON = 1, <rectgroup>, 6, 90, #FF0000

FRAMESUB

With this function, you can define a new frame from another frame (1% parameter), removing items from a third frame
(2" parameter). The syntax is:

[group] = FRAMESUB (framel, frame2)

For example, this script uses two square group of frames for creating a third hollow group of frames (subtracting the
second from the first):

[grp_al] = FRAMEBOX (0, O, 6, 6, 1, 1, C)
[grp_b] = FRAMEBOX (1, 1, 4, 4, 1, 1, C)
[grp _c] = FRAMESUB (grp _a*, grp b*)

ELLIPSE = 1, <grp c*>, #00FF0O0

FRAMETRANS

This function creates a new group of frames, taking all the frames from a group, and applying to them a horizontal and a
vertical offset, and optionally a change in width and height. The syntax is:

[newframe] = FRAMETRANS (frame group, x offset, y offset, width change, height
change)

For example, this line takes all frames from group test, and creates a group test_trans shifted right of 0.5:
[test trans] = FRAMETRANS (test, 0.5, 0)

FRAMETRI

With this function, you can define a group of frames, specifying three frames, and including all the frames in the
triangle drawn used the frames as vertexes. It works with frames created from FRAMEBOX and FRAMEHEX
functions. The syntax is:

54

[trianglegroup] = FRAMETRI (framel, frame2, frame3, flags)
You can use these flags in the 4" parameter:

O = does not include the outer frames
I = does not include the inner frames

For example:

CARDSIZE = 18, 20

HEXGRID = 1, 0, O, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX (O, O, 18, 20, 1, E)
[trianglegroup] = FRAMETRI (baseb3, basei6, baseclO)
POLYGON = 1, <trianglegroup>, 6, 90, #FF0000

55

Expressions

Expressions may be used to calculate numeric parameters or numbers in TEXT parameters, these delimited with “{”

@9

and “}”. You can use numbers (integer and decimal separated with a dot “.”), parenthesis and these operators:

+

addition
subtraction
multiplication
division
exponentiation
modulus
integer division

th &+ >~ % !

For changing the order of operations, you can use “(,)”, “{” and “}”, these are treated like the same. You cannot use
“[”” and “]” (used for labels).

For example, these are valid expressions:
RECTANGLE = 1, 0, 0, (1+2)*2, (1+2)"2, #FF0000
TEXT = 1, "Result {(2+2)*2}", 0, 0, 6, 9, center

This is a special variable: the paragraph character (8) gives you the current card number; for example, that script creates
ten cards, each with a number from 1 to 10:

FONT = Arial, 32, , #000000
TEXT 1-10, "{s}", 0, O, 6, 9, center

That script creates ten cards, each with a random number from 1 to 100:

FONT Arial, 32, , #000000
TEXT = 1-10, "{1dio00}", O, O, 6, 9, center

Counters are variables, that can be used in expressions; there are two kinds of counter, these are used for integer values:
ABCDEFGHTIUJ

And these are used for floating-point values:

AA BB CC DD EE FF GG HH II JJ

A counter can be initialized with COUNTER directive:

COUNTER = 1, A, 1

and later re-used in an expression:

RECTANGLE = 1, 0, 0, A, A, #00FFO0O

A counter can be auto incremented with a pre- and/or a post- number. If A has a value of 10, this command:

TEXT = 1, "{1a2}", 0, 0, 3, 3, center

will give an output of 11, and A will have a value of 13 after that line.

The counter D is a special case, it has been changed for default into a dice (see DICE keyword, page 93), to give a
random value, the syntax is ndf, where n is the number of dice, each with f faces. If not specified, n is set to one, and f is

set to six.

These are special symbols:

56

Z Format
X Repeat

The “Z” symbol may be used when you need to format a decimal value with a fixed number of digits. The syntax is
valueZmask, where the mask is a sequence characters for the integer part, a dot (“.”) and a sequence characters for the
decimal part. The characters that can be used for the mask are:

0 a digit taken from the number, if there is not a digit in that position, a zero (“0”) is written instead
a digit taken from the number, if there is not a digit in that position, a space (“) is written instead
For example:

FONT = Arial, 32, , #000000

TEXT = 1, "{4/3z00.00}", 0, 0, 6, 9, center, center
The result will be a “01.33” printed on the card.

The syntax for the “X” symbol is textXnumber and duplicates the text for several times. For example:

FONT = Arial, 32, , #000000
TEXT = 1-5, "{*Xs}", 0, 0, 6, 9, center, center

Will output an asterisk on the 1%t card, two asterisks on the 2" card, three on the 3™ and so on.

57

Comments

Comments can be inserted in scripts, marking them with a character on the start of the line. The character can be an
apostrophe (“) or a semicolon (;) or a custom character selected from the “Config” window.

Example:

CARDS = 52
‘This is a standard deck

From the “Config” window you can also check the “Use in-line comments marked by ...” option, and after that you can
use a syntax like that:

CARDS = 52 ‘' This is a standard deck

If you use a custom character and open your script on another computer (with a different configuration) your comments
will not be evaluated as such. To avoid this problem, you must include a COMMENT directive at the start of your script
(see page 90).

You can apply or remove the current comment’s character in a block of selected text with two buttons on the right side
of the main window: “+Com” for apply comments and “-Com” for removing comments.

58

Script lists

If you must work on multiple scripts, you can create a list for manipulating them. You can activate this option clicking

on the button “Script list™:

|
Cutput Filenarme number
() Default printer (@) BMP file () GIF file () Mo output (® Use card number
() PDF file () JPEG file () TIFF file
() PDF /8 file () PMEG file () TIFF file [CMYE] (O Use card count

O x

hew list
Open list
Save list
Save list az
Add zcript
Femaove zcript
Sort list
Open script
Open all zoripts
Create list editor

Eragze zcript

Close

With the buttons on the right side, you can create a new list, open an old list, save the current list (with the current name
or specifying another), add another script to the list, remove a script and sort the list. You can also open the selected
script, or open all of them (in multiple tabs), create a list from all the current scripts and erase the selected script.

With the button “Run list” you can launch a “Validate and build” task on all the scripts listed in this window, choosing
the output for them with the “Output” box: you can print the result, create PDF, and save the images in bmp, jpg, png or
tiff format (the latter with standard and CMYK color space). With the “Filename number” box you can choose if the
filename must be chosen from card number or card count: it can be different if you use a PRINT directive (see page

152) in your scripts.

59

Create PDF

The button “PDF” in the main window opens this form:

‘T Save deck as a PDF file Y

FDF filename |tEEt.|:":|f | Browse. ..
FOF author | |

CIFDF A
|1z JPEG Compreszion for images
[]Use scaled images

PDF compression level

() Maone
() Low
(@) Default
(I Max
[]5ave a copy with a CMYK. colorspace
Browze. .
Browze. .
MHone
Caricel Save az BMP Save

With this form, you can specify a filename and an author for the PDF file.
PDF/A: with this option, the PDF file is saved in this format.

Use JPEG Compression form images: with this option enabled all the images in the PDF file are internally stored in
JPEG format.

Use scaled images: with this option enabled, the program uses a high image compression for the PDF file, reducing its
size (and its quality).

PDF compression level: you can choose between four standard compression level for the images (None, Low, Default
and Max).

Save a copy with a CMYK color space: if you have installed Ghostscript (http://www.ghostscript.com) you can also
save it with CMYK color space (instead of RGB), specifying the path for the executable (Gswin32c.exe), and use an
ICC color profile.

60

http://www.ghostscript.com/

Save images

The button “MT” in the main window opens this form:

1l Save images - multi threaded e
Fath: | Browse. ..
Image format
(®) BMP (I PNG ITIF () PDF
I JPG (IGIF (ITIF [CMYE] () PDF A&
Threads: 2 '

' Cancel
Qverzamp.: 1
Save

With this form, you can specify a path for saving the cards’ images, the file format, the number of threads to be used,
the DPI (see page 96) and oversampling (see page 147) values.

| Note: every thread uses a separate memory pool, thus it is possible to use more than 4GBytes of memory.

61

Convert a PDF to images

The button “CP” in the main window opens this form:

1l Conwvert PDF to images it
Gawind2e. exe | | Browse...
FOF filenarme | | Browse...
Image file(s) | | % =page n’
CFI: 300

Canicel Convert

If you have installed Ghostscript (http://www.ghostscript.com) you can convert PDF files into images. The first field is
for the Ghostscript executable; the second is the name of the PDF file, the third is for the resulting images (you can use
the § character for the page number); the fourth field is for the DPI resolution of the final images.

62

http://www.ghostscript.com/

Command-line parameters

You can run nanDECK from the command line (if you want to execute a script in a batch, for example). The syntax is:

nanDECK <script file> <1st action> <274 action> .. <n*! action>

The action parameter can be one or more of the following:

[createbmp

[createjpg

[createpng the program creates all the cards and saves them in bmp/jpg/png/gif/tif formats (also with CMYK
[creategif color space), one file for each card

[createtif

[createtifcmyk

[creategifa

[createpdf the program creates all the cards and saves them in one single file in animated-gif or pdf format
[createpdfa

[print the program creates all the cards and prints them with the default printer

lexec the program runs the script (useful when using SAVE directive)

/range= the program creates only a range of the card, with the syntax start-end (for example /range=1-10)
/output= this is the path for the resulting files

/dpi= you can specify a different DPI value (the value in the script is not used)

/oversample= you can specify an oversample value (the value in the script is not used)

/name= the program uses a label for the name of the card when saved as individual images

[/[label]=value the program adds a label with that name and that value

/nopdfdiag the dialog for the creation of a pdf file is not shown

For example, to save all images obtained with script “c:\my scripts\testO1.txt” in png files, you can write:
nanDECK “c:\my scripts\test0l.txt” /createpng

To create a pdf with all the cards, you can write:

nanDECK “c:\my scripts\test0l.txt” /createpdf

The images are created in the same folder for the script, and for multiple images, a number will be added to the end of
the filename. In the 1%t example, the images will be named:

c:\my scripts\test0l 01.png
c:\my scripts\test0l 02.png
c:\my scripts\test0l 03.png
In the 2" example, the file will be named:

c:\my scripts\test0l.pdf

If you leave the action parameter empty, the program will only load the script specified in the 2" parameter.

63

Keyword wizard

In this program, you can use a wizard for inserting keywords (and specifying all the parameters). In the main editor, if
you want to insert a directive, right click on an empty row and a menu appears, with all the keywords, if you click on
one entry, the corresponding wizard form will be showed:

Al nanDECK - Ver. 1.24.1

Addnew lab
Newdeck || wiz

L FONT = Arial, 32, B,

#0000FF

2 TEXT = 1,"SEER", 0, 0, 100%, 100%, center, center
DOpen deck §
4 FONT = Arial, 24, B, #FF0000
S TEXT = 2-4, "WEREWOLE", 0, O, 1008, 100%, center, center
Fleopen deck & FONT = Arial, 28, B, 000000
7 TEXT = 5-18, "VILLAGER", 0, 0, 100%, 100%, center, center
s
Save || as 3 RECTANGLE = 1-18, 0, 0, 100%, 100%, $FFFFFF$000000#FFFFFF@G0, empty, 1
9 BASERANGE DECK FOOTER LAYERDRAW PAGEFONT TAG
— BATCH DICE FOR umMIT PAGEIMAGE TEXT
BEZIER DISPLAY FRAME LINE PATTERN TEXTFONT
BEZIERS DOWNLOAD GAP LINERECT PIE TEXTLIMIT
BLEED opI GRID LINK POLVGON THREADS
BORDER DRAW HEADER LINKCOLOR PRINT TOKEN
Validete deck BRUSH DUPLEX HEXGRID LINKENCCSV ‘QRCODE TRACK
- BUTTON EDGE HTMLFILE LINKENCODE RECTANGLE TRACKRECT
CANVAS ELLIPSE HTMLFONT LINKFILTER RENDER TRIANGLE
Buid deck CANVASSIZE ELSE HTMLIMAGE LINKMULDIS RHOMBUS. UNIT
CANVASWORK ELSEIF HTMLKEY LINKMULTI ROUNDRECT VECTOR
CARDS ENDFRAME HTMLMARGINS LINKNEW RTFFILE VISUAL
Pt deck. CARDSIZE ENDIF HTMLTEXT LINKRANDOM RTFTEXT Z0oMm
CASE ENDLAYER ICON LINKSEP SAVE
Save inages| MT CASEELSE ENDLINK ICONS LINKSTVLES SAVEGIFA
CHROMAKEY ENDSECTION IF LINKTRIM SAVEPAGES
COLOR ENDSELECT IMAGE LINKUNI SAVEPDF
FOE (5 COLORCHANGE ENDSEQUENCE IMAGEFILTER 106G SECTION
COLORS ENDVISUAL IMAGESIZE MARGINS. SELECT
GFa | TIFF COMMENT FILL INCLUDE MOSAIC SEQUENCE
COMPARE FOLDER INPUTCHOICE NANDECK SET
copy FONT INPUTLIST NEXT SPECIAL
COPYCARD FONTALIAS INPUTNUMBER ORIGIN STAR
CORRECTION FONTCHANGE INPUTTEXT OVERSAMPLE STORE
Rz COUNTER FONTRANGE LAYER PAGE TABLE
Insert >
Linked data

Find ipl | FONT="font name", font size, style B/1/U/S/T/N/C/R/H/Q/E/Z/F N PIO/D/G, himl color | html radient, /stm/ cobr | htm{ gradient, outine x, outine y, step x, step y

®

Copy scipt

SEER

[Link first 1 Previen
[Link dis Gotocard | [] Auto buid
[Highight Highlight | (] Partial

™ “ ["
Card preview Canv
isual Editor Comp
Scrptfit Edit

Teble

The Game Ciafter
Copy to BGG

[V aidaling labels step 1]
Labels OF.
Add Com | Rem | ing inclaces,
[Vaidating inks [step 2)

aldaling labels [siep 7}
Hep(F1) | F2) [Labels OK

D eck valid

Buiding deck.
Config | Info |Deck b (000001

~

Al deck

L

Deck size: 52 MBytes (Cache: 0 MBytes)

For every keyword, a different wizard form appears, with all the parameters (obligatory and optional). The same
window appears if you press “F2” (modify) key on a pre-existent row (or right-click on the same pre-existent row). For

example, this is the RECTANGLE wizard form:

1l RECTANGLE

Range | |

O o

Setrange

Pick a color
Color
Pick a gradient
Pick a color
Lk Pick a aradient
EMPTY

Help (F1)

Cancel

64

Pick rect.

RECTANGLE="range", pos_x, pos_y, width, height, html_color({, html_color | EMPTY, thidkness)

Optional parameters are in italic (like Thickness in the above form). A hint for the syntax is show in the bottom of the
form, with the “Confirm”, “Help” (it points to the RECTANGLE help page) and “Cancel” buttons. For some

parameters, there are buttons for inserting specific values (like colors and gradients). For position and size there is a
specific form (“Pick rect.” Button, in the above form):

Al Pick a rectangle - m} b4

Confirm

X =000.0
¥ =000.0
i = 0500
H =050.0

Full card

Half left | Half gt

Half top
Half bottom

T

Etmleft Bimrgt

L TC TR
CL CC |CR
BL BC | ER
Shrink. Enlarge

[Show card

Cancel

The rectangle can be moved and resized, dragging it with the mouse; you can use the rightmost buttons to change the
rectangle size or position into some standard values.

Tip: you can go directly to this form, pressing the key F3 (or clicking the “Visual edit” button) where you are on a line
with a graphic directive.

In the wizard form, if you double click in a field, you can choose a label name from a list (you can see also the label’s
value):

10 Insert label (1)

[CH&R1]
[CH&RZ]

FOS_BL

[PO5_5IG]
[FOS_TL]
[FOS_TR]
[POS_WAL]
[SEQ]

- [m] X

456153

Cancel Show s lit

Tip: in every field, you can use the mouse wheel to increase / decrease a numeric value.

65

Linked data editor

If you use a LINK directive (see page 134) to use a CSV data file, you can edit directly this file using the “Linked data”
button. If you click on it, the program shows you a list of linked files. If you choose one of this, a window opens itself,
showing you a table with the file content. For example:

A0 Edit link file — O X
° nation type combat movement comi # — g
YW alidate deck » it 3 3 0 neert recar
Build deck — fre cay 2 5 o Delete record
m fre arm 4 4 i}
Enable row _|fre arm 5 4 0 Add colurnn
a fre hg 1 4 3
Dizable row o= i] 3 0 Delete calumn
qer inf 3 3 i}
Enable all rows | | Rename column
_|aer arrn E 5 i}
Disable all rows | | — 9! am a 4 a Lpdate lists
_|3er hq 1 5 3
Enable anly curr. Hide editar
Set rahge cum. RTF Editar
Auto build
W
< >
= o * - - Claze

You can modify directly a cell clicking on it (there is a larger edit box on the bottom of the window), you can also
change the table’ sorting with a click on the column (one click sets an ascending order, another click sets a descending
order, it doesn’t work for larger fields). With the buttons on the right, you can do some tasks, like insert or delete a
record, add, delete, or rename a column (a field), update the lists of data (in the drop-down menu in each field), hide or
show the editor, open an external RTF editor (for the current field), or close the window.

The two buttons “Validate deck” and “Build deck” on the left are replicated from the main window. With the other
buttons on the left, you enable or disable the current row (putting a ¢ in front of it) or enable or disable all the rows. You
can also enable only the current row or setting the range for the deck building. With the buttons on the lower side of the
window (under the edit box) you can move the current record (first, previous, next, and last), add (+), delete (-), edit
(the triangle), confirm (the check sign) or discard (X) the changes in a record.

All the change made in this window to the linked file will be saved if you save the main script file.

| Tip: you can instantly build a single card with a double click on one row of data.

| Tip: you can instantly open the external RTF editor with a double click on the lower editor.

| Tip: you can select the external RTF in the “Config” button from the main window.

66

Virtual table

The “Virtual table” option is a desktop in which you can put the result of card rendering, you can use it for saving
images for a manual or play test the drawing of cards from a deck. Without modifying your script, you can view the
Virtual table clicking on the button “Table” after building a deck. Then you can see a window with your deck in the
center of the screen, and you can use these commands:

Mouse commands on decks

click select deck

double click draws a card face up

shift double click draws a card face down

right click rotate deck 90°

resize resize deck image

shift resize resize deck image without keeping size ratio
ctrl resize resize deck image from the center

Mouse commands on cards

click select card

double click turn card face down/face up

right click rotate card 90°

resize resize card image

shift resize resize card image without keeping size ratio

ctrl resize resize card image from the center

ctrl click pick all the cards and the decks under the cursor and create a new deck
mouse wheel zoom table

In the bottom line of the window, you can read the number of cards in the selected deck. On the right panel, you have
these controls:

Reset table this button reset to the initial state all the decks and the elements on the table
Reset deck this button reset to the initial state the selected deck
Display deck this button draws all cards in the deck, and position them left to right, top to bottom in the table

67

Select a card this button lets you to select a single card from a deck

Delete this button deletes the selected object (deck, card, or token)

Draw (number) the number of cards specified is drawn each time you double click on a deck
Position the card drawn from the deck is placed to this position, relative to its deck
Rotate after a card is draw, the position is moved to the next

Position +- the card drawn is placed in a slightly random direction

Position slider the amount of the offset of the position when the last option is enabled
Align to Grid the card drawn is placed in a grid of the same size of the card

Zoom slider this slider enlarges or reduce the table size

1:1 button this button reset the zoom

Card preview this button show the current card, enlarged

Show canvas the canvas is shown as a background image

Auto select the elements of the table are selected automatically when the mouse pass over them
Show tags the tags (see page 165) are shown in the four quadrants of the table

Bring to front an object clicked is pushed to the front, before all the other objects

Move stacks when you move a card, all the other cards on top of it are also moved

Save image the table is saved as a bmp file

Close you close this window

This is the window that the program shows you to select a single card from a deck:

10 Select card (20) - O X

A A 2 2 3 3 4 4 6 6
L] LI LIt LIt LI L3
* LY
* b
* & * s LT
& LX)
L L. L L L. %
Y Y 4 4 € € ¥ ¥ 9 9
9 9/ |10 10 |J J Q Q K K
L] LI LIt LIt LI L3
LT
LT Py
LT T Sk
LT T Sk
4 L. LI LI L. L
6 6] 0 0l r r o] O ™ A
2 2 3 3 4 4 5 5 7 7
A A A LI LI A A L)
AN
A LY
A LY A

There are two directives that you can use in your script to customize the Virtual table: the DECK directive splits the
cards in more than one deck, and the TOKEN directive creates some elements to be used on the table, with a fixed text
or a randomized value, in the latter case you can “roll” the token with a double click on it.

Example:

DECK "1-26", "Red", #FF0000, 30%
DECK = "27-52", "Black", #0000FF, 30%

TOKEN "{1ld6}", 50, 50, #FFFFFF, #0000FF, 1
TOKEN = "{1de6}", 50, 50, #FFFFFF, #FF0000, 1
TOKEN = "s$", 100, 50, #FFFFFF, #00FFO00, 10

Both in DECK and TOKEN directives you can specify a list of frames for deck/token starting position, another list of
frames for the positions in which they can be moved, and a list of rules to be enforced; in this case, you can specify one
or more keywords from this list:

MAX1->BLOCK if the item is moved in a frame already occupied, the moving is blocked

MAX1->PUSHF if the item is moved in a frame already occupied, the occupying item is moved in the next frame in
the list

68

Visual editor

You can open the Visual Editor with a click on the “Visual editor” button, or pressing F4 on the keyboard, or by a
middle button (or wheel) click on the mouse, this is the main form:

A Visual editor - X
Brush Button add card

Del card

1/1
Real-time update

cirde Edge

Text TextFont

Track. Trackrect

Vector

Olirder CIvRuer O
Modify abject
Clshon grid Histeps
Delete object
Csnapto grid Vteps x

Duplicate object
[lsizetooid | Toggle 50% picate o

L} 11

Modify name, lock, aroup
Lock. Unlock

Left| Down| | Up | Rignt | e | =
e |

Confirm

Cancel

The visual directives are a subset of the standard ones, and are loaded from a section of the source delimited with
VISUAL / ENDVISUAL directives, for example:

VISUAL
ELLIPSE = 1, 0, 0, 100%, 100%, #O0OOOFF
ENDVISUAL

With this script, when you press the “Visual Editor” button, the program loads the lines between VISUAL /
ENDVISUAL in the visual GUI, and you can modify them, or add new directives (with the toolbox on the left of the
window).

When you press the “Confirm” button, all the objects are inserted in the source, between VISUAL / ENDVISUAL, so
there is a two-way interaction between source and GUI (but only in a section of the source). Non-visual directives are
not allowed in this section (the program gives an error in the validation step).

If the VISUAL / ENDVISUAL section is not present, the program shows you an empty GUI (but you can add new
objects) and when you return to the source, a visual section is added to the end of it.

You can see at the right of the GUI window a list of directives, that will go to the source if confirmed, that are layered
from the top (first, to the rear) to the bottom (last, to the front). They can be drag and dropped across the list to change
their layer position (the result is shown immediately in the main panel).

At the top right of the window there are some buttons to navigate through the deck (and add or delete cards), a
checkbox to enable/disable the real-time update of the current object when you change its parameters (with F2), a
combo box for choosing a label / sequence to be inserted in directives like TEXT or IMAGE and another combo box for
choosing a sequence to be used with a LABELRANGE function to choose a range (the object is shown only when the
item of the sequence is equal to “1”).

The last combo box is when you want to link the object to a frame (only frames defined within VISUAL /
ENDVISUAL section are shown); these frames are shown by clicking on the “Frames” tab (all other objects are

69

locked); in this tab, you can also enable only a group of frames: to define a group you can create frames with a
group/name syntax (for example: groupl/framel, groupl/frame2, etc.). If you enable the option “Change objects’
frames”, when you choose a group, the program will move all the objects that has frames with compatible names to the
new frames.

In the bottom left of the windows there are the controls for showing h/v rulers, a grid (with the number of horizontal and
vertical steps) and snap/size to the grid, a slider for zooming in and out the card, a button “Toggle 50%” to toggle on/off
50% transparency to the current object (useful to see what lies beneath), and a button “1:1” for restoring a 100% zoom
and four buttons to move the selected object in the four directions (these buttons are linked to the arrows keys on the
keyboard).

In the bottom right there are nine buttons, to move the selected element to these positions. If you use the right mouse,
the element instead of being moved is resized (for example, the CC button resize it to the whole card). The last two
buttons, “Cx” and “xC” centers the element vertically and horizontally, respectively.

Mouse controls:
¢ right click (on the object and the command in the list): modify the parameters utilized for rendering the object
e double click (on the command in the list): modify properties of an object (comment, lock, group, snap to grid,
and size to grid)
e use mouse wheel for zooming the card’s image
e use CTRL + mouse wheel to move between cards

Shortcuts:

F2 modify current object

F3 modify properties of current object

Del deletes current object

CTRL+D duplicate the current object

CTRL+L lock the position of the current object
CTRL+U unlock the position of the current object
CTRL+H toggle 50% transparency on/off
CTRL+G toggle snap to grid

CTRL+S toggle size to grid

CTRL+T tile all the windows

CTRL+R toggle group(s)

CTRL+1 assign group “One” to selected object
CTRL+2 assign group “Two” to selected object
CTRL+3 assign group “Three” to selected object

CTRL+SHIFT+1 assign group “One” to selected object
CTRL+SHIFT+2 assign group “Two” to selected object
CTRL+SHIFT+3 assign group “Three” to selected object

CTRL+UP aligns current group of objects to the top
CTRL+DOWN aligns current group of objects to the bottom
CTRL+LEFT aligns current group of objects to the left
CTRL+RIGHT aligns current group of objects to the right
CTRL+HOME aligns current group of objects to the center, horizontally
CTRL+END aligns current group of objects to the center, vertically
CTRL+PGUP distributes current group of objects horizontally
CTRL+PGDOWN distributes current group of objects vertically

UpP move the current object up one pixel

DOWN move the current object down one pixel
LEFT move the current object one pixel to the left
RIGHT move the current object one pixel to the right

70

Configuration

The “Config” button on the main window brings you to the configuration window:

Al Cenfiguration x
Deck file location . Edior RTF |H:\Programmiti/indows NT AccessoriwORDPAD EXE |
() on digk [slow, for large decks] It ST change this

setting, you must Set Default Browse. .

(®) on RAM [fast, for small decks] restart the program

Inkscape exe |H:\Programmi\lnkscape\inkscape. ene |

Walidate & Build buttans

Uze old wersion of Inkscape Browse. ..
(®) Two buttons
() One buttan GawindZc.exe |H:\Programmi\gs\gsﬂ.DS\bin\gswin32c.exe |
.) Browese. ..
Default for deck: file's extension .
® .t Reload last work' session at startup
’ []Check at startup for a new program version [online)
(O .nde Check for matching parenthesiz on "Walidate deck"
[Auto-save scrpt on "Build deck” command
Default comment char Do not show script after validation
(OB Convert ; to ' Using this ch []wite log ta file <nandeck log>
zing this char - -
[OF Conwvert 't ; comments ane Dpen PDF after c:rea.utmn
’] or Excel filex
: color-coded [[]Use ADD for Excel fi
() Custom / [JUse 2TEMP falder for HTMLARTF wark files
[CJDPI = 75 fior “&uto build” feature
Uze inline comment marked by " Use placeholders for missing image files
- [] Stop build when erors are found in the script
Editor bext colar Choose...]
Always shows hint panel
Editor backaround calar Choose... Uze fast rotation libram [Windows only)
PRI Usze tabs in editor Spaces |2 =
Editor highlighter color Chooze...))
) Show label/color/image preview Default
Editar structures calor Choose... Load font files in program's folder at start
Bl st aman s Dfault] Use older factar for shadows and outlines in HTML

) [Cache images
Editor background error Choose... [Create a new tab for Mew and Open commands
Enable auto increment/auto decrement of counters

Brackets text Chooze...

Editar auto complete (bazed on previous lines]
Brackets background Choose. .. Automatic addition of closing parenthesis
Copy to BGG Choose. IES altemat?ve paste mode

)) Uze altemative night-click menu

Editor text size 10 = K.eep the states of link first' and 'ink dis.' checkboxes
Handle size [vizual editor] 10 = W= th? N fllag with prg image fles

BATCH directive
Handle size [table) 0 = () Dizabled

() Enabled [with confirmation]

(®) Enabled

Enable Internet Explorer 171 for HTRMLTE=T # HTMLFILE

Cancel Save keys Test keys

Deck file location: the program can run in two modes, the default “on RAM” setting uses RAM for the card rendering,
it is fast, but if you have many high-resolution cards, it can slow down the whole computer (when the RAM is full).
Instead, the “on disk™ setting is slower, but it can render many high-resolution cards without slowing down your PC.
The same is true if you have exceptionally large decks (thousands of cards)

Validate & Build buttons: usually “Validate” and “Build” are two distinct buttons in the main window. With this
option, you can have one single button “Validate & Build”; if you click it, the script will be first validated, and if valid,

the deck will be built next

Default for deck file’s extension: with this option, you can choose the default extension between “.txt” and “.nde” (and
assigning these files to the nanDECK program and open them with a double click)

Default comment char: with this option, you can choose the character used for commenting lines, and changing all of
them from one to another, you can also use a custom character (instead of the default ¢ and ;)

Use in-line comment marked by ;;: if you enable this option, you can use a double comment char for inserting
comments on the same line used for commands. For example (with the default *“;” comment char):

CARDSIZE = 6, 9 ;; default card size

71

Editor text color, Editor background color, Editor highlighter color, Editor structures color, Editor text error,
Editor background error, Brackets text, Brackets background: with these buttons, you can change the default
colors for the editor text, background, highlighted line, lines that contain special directives, text and background for
lines that contain errors and brackets (and re-setting them to the default values by pressing the Default button)

Copy to BGG: you can change the d3efault color for copying the current script into a post on BoardGameGeek’s
forums

Editor text size: this number sets the size of the font for the editor’s character (the default is 10)

Precision visual = script: this is the number of digits for fractional values that the software uses when an object in
visual editor is converted to a script line

Handle size (visual editor): this is the size (in pixels) of the eight white squares that you can use to resize an object in
the visual editor

Handle size (table): this is the size (in pixels) of the eight white squares that you can use to resize an object in the
virtual table

Editor RTF: this is the path to the executable file called when you want to edit a field text in a linked file with an
external RTF editor. You can also choose the default executable linked with an “.rtf” file extension

Inkscape exe: this is the path to the executable file for Inkscape, used with the VECTOR directive (see page 173) when
you want to use it for the rendering, instead of the internal engine (the default, less accurate); the checkbox is used if
you have installed an old version of Inkscape

Gswin32c.exe: this is the path to the executable file for Ghostscript, used with the directive LOADPDF (see page 142)
when you want to use it for reading PDF files, instead of the internal engine (the default, less compatible)

Reload last work’ session at startup: with this option enabled, at the start the program loads the file(s) opened in the
last session

Check at startup for a new program version (online): with this option enabled, at the start the program checks online
if a new release is available for the download and warns you in the window’s title

Check for matching parenthesis on “Validate deck”: with this option enabled, the program checks if the parenthesis
match in all your script

Auto-save script on “Build deck” command: with this option enabled, the program always saves the script when you
click on the “Build deck” button

Do not show script after validation: usually the program, after the validation procedure, writes the script in the lower
box in the main window. With this option enabled, the script is not written (speeding up the validation process)

Write log to file <nandeck.log>: with this option enable, you can save the program log (all the text shown in the lower
box in the main window) in a text file

Open PDF after creation: with this option enabled, after a PDF is created, the program opens it, using the default
application associated with “.pdf” extension

Use % TEMP% folder for RTF/HTML work files: these directives create a temporary file, if you enable this option
that file will be create in the temporary folder, if you disable this option, it will be created in the current folder. Note
that if you have projects in folder linked to a cloud service (like Dropbox™) you should enable this option

DPI = 75 for “Auto build” feature: if you have enabled the “Auto build” option, if this option is enabled, the preview
is done at a lower resolution (useful for slow PC)

Use placeholders for missing image files: if you specify file images that does not exists, the program creates them (a
random color bitmap with the name of the file repeated on it) and shows you in a window the list of the missing files

72

Stop build when errors are found in the script: with this option enabled, the validate procedure is stopped when an
error is found in the editor, if it is disabled, the line with errors are highlighted and the validation is completed

Always shows hint panel: with this option enabled the bottom panel with the keyword’s help is shown always, and not
only when a keyword is present in the current editor line

Use fast rotation library (Windows only): use an alternative rotation library that uses routines available only on
Windows (when the program is executed for the first time on Wine, this option is unchecked)

Use tabs in editor: if you enable this option, each tab key is converted to the specified number of spaces

Show label/color/image preview: with this option enabled, when the caret is on a label, its content (text, color, or
image) is shown in the lower part of the main window (the Default button resets the standard widths of these resizable
panels)

Load font files in program’s folder at start: if this option is enabled, nanDECK, when it is started, loads all the font
files that are found in the same folder with its executable

Use older factor for shadows and outlines in HTML: when they were first implemented, shadows and outlines with
HTMLFONT use a value for size that was not correct; now it is fixed, but if you want to use the older routines, check
this option

Cache images: with this option enabled, all the files loaded with an IMAGE directive are stored in RAM, for a faster
reload; if you need more RAM for your deck, uncheck this option

Create a new tab for New and Open commands: if this option is enabled, when you create a new script or load an
existing one, a new editor tab is created, instead of executing that command in the existing editor tab

Enable auto-increment/auto-decrement of counters: with this option enabled, you can use numbers before or after
counters to add/subtract a number from them (if before, the number is added/subtracted before using the counter, if
after, the addition/subtraction occurs after having used the counter)

Editor auto complete (based on previous lines): if this option is enabled, when you digit some characters, if an
existing line is already present in the editor, that starts with these characters, is proposed as selected text

Automatic addition of closing parenthesis: if this option is enabled, when you digit an open parenthesis (standard,
square, or curly) the corresponding closing parenthesis is automatically added

Use alternative paste mode: if you are unable to paste text in the editor, try this alternative method for the clipboard.

User alternative right-click menu: with this option enabled, the right-click on a directive line open the keyword list
instead of the keyword editor (note that you can always have the non-selected option with a CTRL+right click)

Keep the states of ‘link first’ and ‘link dis.” checkboxes: note that usually these two checkboxes are not saved
between sessions (i.e., closing, and reopening nanDECK do not restore their state)

Use the N flag with png image files: if enabled, every png image file loaded with directives ICONS (see page 119),
IMAGE (see page 122), and PATTERN (see page 150) has the N flag (to use the transparency layer info)

BATCH directive: for security reason the BATCH directive (see page 79) must be enabled before use, selecting an
option from “Disabled”, “Enabled (with confirmation)”, and “Enabled”

Enable Internet Explorer 11 for HTMLTEXT / HTMLFILE: as a default a program cannot use Internet Explorer
features beyond version 6, until there is a specific entry in Windows’ Regedit; by using this button the program writes
that correct entry

Save keys: the program saves a “keys.txt” file, that contains the shortcuts for several actions, if you want to change
them modify this file (with an editor) and restart nanDECK

73

Compare decks

When you have loaded more than one deck (adding another tab with CTRL+N) you can view them side to side by
clicking on the “Comp” button in the right side of the main window:

Ml Compare decks - O x

Linked + - Close

You can browse the decks with the arrow buttons (linked by default, but you can remove this feature with the “Linked”
checkbox) and you can zoom in or out with the two buttons “+” and “-”.

74

Shortcuts

At the start, nanDECK reads a shortcuts.txt file from the same folder, and creates shortcuts for every line read (or
combinations of lines). You can recall these clips of text with combinations of keys like Ctrl + Alt + letter or Ctrl +
Alt + Shift + letter. The lines associated with the letter character, lower of uppercase, (identified before a “:” colon) are
inserted in the main editor (in the current edit position).

For example, if you have this shortcuts.txt file (created with Notepad or another text editor):
r:RECTANGLE = 1, 0, 0, 100%, 100%, #OOOOFF

T:FONT = ARIAL, 32, , #000000

TEXT = 1, "Test", 0, 0, 100%, 100%

You can press Ctrl + Alt + r for the RECTANGLE line or Ctrl + Alt + Shift + t for the FONT + TEXT lines.

75

References
E-mail

Website

Yahoo! Group

BoardGameGeek Guild

nand@libero.it
http://www.nandeck.com
http://tech.groups.yahoo.com/group/nandeck

http://www.boardgamegeek.com/quild/454

76

http://www.boardgamegeek.com/guild/454

FA.Q.

1) When must | use quotes (*)?

This program uses an interpreter for the evaluation of all parameters, this code separates them using commas (,). So, if a
parameter has a comma in it, you must enclose the parameter in quotes. Otherwise, if a parameter has no commas, the
quotes are optional (the program will accept the parameter with or without quote), but for some parameter quotes are an
error (for numeric parameters, for example).

Correct examples:

IMAGE "1-10", "c:\my images\earth.jpg", 0, 0, 6, 9, O
IMAGE = 1-10, c:\my images\earth.jpg, 0, 0, 6, 9, 0

TEXT = 1-10, "This, is a test", 0, 0, 6, 9

Note: quotes in ranges are not needed.

Wrong example:

TEXT = 1-10, This, is a test, 0, 0, 6, 9

The 2" parameter will be split into “This” for 2" parameter and “is a test” for 3.
2) How can I insert quotes (or another character) in a text?

You can use \n\ syntax to insert a character in a text, with n being the ASCII code of that character, for example, if you
want to enclose a text in quotes (ASCII 34) or add a new line (ASCII 13):

FONT Arial, 32, , #000000
TEXT = 1, "I say \34\Hello\34\", 0, 0, 6, 9, center, center

Note that \13\ works with TEXT directive, instead with HTMLTEXT you must use the HTML tag
.

3) Why this program uses so much memory?

This program has two settings for storing cards during creation: RAM or disk. The default setting is in RAM, and you
can change that in the “Config” window, remember that RAM is faster (and you can run multiple instances of the
program) but the computer may slow down when it starts using swap space; on disk is slower (and you can’t run
multiple instances) but the speed remains the same even with very large decks (or higher DPI settings).

4) Why there is option (X) if you can use (Y)?

When writing this program, | tried to maintain backward compatibility with previous version, so you can do the same
thing in more than one way. For example: WWTOP option for vertical alignment in TEXT command is equal to
CENTER, for backward compatibility.

5) Thereis a Linux version?

No, but if you install Wine, you can run the same nanDECK version for Windows on your Linux, with all the major
features; also, if you want better compatibility, you can download and install the “Microsoft core fonts”.

Wine http://www.winehg.org/
Microsoft core fonts http://sourceforge.net/projects/corefonts/files/the%20fonts/

Note: with a recent update, nanDECK uses a DLL (FONTSUB.DLL) that is not present in every distribution, if this is
the case the program will not start, you must download a zip that includes this file from here:

http://www.nand.it/nandeck/nandeck wine.zip

6) There is a Mac version?

77

http://www.winehq.org/
http://sourceforge.net/projects/corefonts/files/the%20fonts/
http://www.nand.it/nandeck/nandeck_wine.zip

No, but if you install Winebottler (and XQuartz) you can run the same nanDECK version for Windows on your OSX,
with all the major features. You can also use an emulator like Virtual Box (free) or Parallels (commercial software).

Winebottler http://winebottler.kronenberg.org/
XQuartz http://xquartz.macosforge.org/

Note: with a recent update, nanDECK uses a DLL (FONTSUB.DLL) that is not present in every distribution, if this is
the case the program will not start, you must download a zip that includes this file from here:

http://www.nand.it/nandeck/nandeck wine.zip

78

http://winebottler.kronenberg.org/
http://xquartz.macosforge.org/
http://www.nand.it/nandeck/nandeck_wine.zip

Directives

BASERANGE

For each card in a range an element is extracted from a sequence, and as a default the first element from the sequence is
paired from the first card in the range. The only exception is when you have a LABELRANGE function (see page 35):
in this case, the n" element from the sequence is paired with the n'" card from the deck. With this directive, you can
change this behavior.

Syntax:

BASERANGE = “range”, switch

Parameters:

“range”: a range of cards

switch: values accepted are:

ON the n'" element from the sequence is paired with the n™ card from the deck
OFF the n' element from the sequence is paired with the n' card from the range

BATCH

This directive executes an external batch script (a text file with a “.bat.” extension). For security reasons, you must
enable the relative option in the Configuration form: here you can choose between “Disabled”, “Enabled (with
confirmation)”, and “Enabled”. The batch file is called with these parameters:

%1 the current card’s number

%2 the total number of cards in the deck

%3 the name of the script

Syntax:

BATCH = “batch file”, flags

Parameters:

“batch file”: path and name for a batch file

flags: one or more of the following flags:

the batch is executed at the validation step (the default, if not specified)

the batch is executed at the start of the build step

the batch is executed at the end of each built card
the batch is executed at the end of the build step

mo nL

Example:
BATCH = "c:\bat\copy files.bat"

BEZIER

This directive draws a Bezier curve from a starting point (x1, y1) to an ending point (x2, y2), using two “handles” (hl
and h2).

Syntax:

BEZIER = “range”, pos x1, pos y1, handle x1, handle y1, handle x2, handle y2, pos x2, pos y2, html color, thickness,
end arrow, start arrow, end angle, start angle

79

Parameters:

“range”: a set of cards

pos x1, pos y1: coordinates of starting point (in cm)

handle x1, handle y1: coordinates of handle for starting point (in cm)

handle x2, handle y2: coordinates of handle for ending point (in cm)

pos X2, pos y2: coordinates of ending point (in cm)

html color: color of the curve, in the same format used for HTML, you can also specify a gradient
thickness: thickness of the curve (in cm), if omitted, the curve is 1 pixel wide

end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the curve
start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the curve
end angle: the angle (in degrees) of the spokes of the arrow at the end of the curve

start angle: the angle (in degrees) of the spokes of the arrow at the start of the curve

Note: if end/start angle is negative, the arrow is drawn closed (with three lines).

Example:
BEZIER = 1, 1.5, 0, 1.5, 4.5, 4.5, 4.5, 4.5, 9, #0000FF, 0.15
BEZIER = 1, 4.5, 0, 4.5, 4.5, 1.5, 4.5, 1.5, 9, #0000FF, 0.15
BEZIER =1, O, 3, 3, 3, 3, 6, 6, 6, #FF0000, 0.15
BEZIER = 1, O, 6, 3, 6, 3, 3, 6, 3, #FF0000, 0.15
Result: Figure 11
Figure 11
BEZIERS

This directive draws a Bezier curve from a starting point (from the last BEZIERS directive) to an ending point (x, y),
using two “handles” (one from the last directive and one from parameter h). The first directive sets only the starting
point, for each subsequent directive a curve is drawn (the starting point for the next curve is the ending point of the
last). For restarting the process, you can specify a BEZIERS with only the range parameter.

Syntax:

BEZIERS = “range”, pos X, pos Yy, handle x, handle y, html color, thickness, end arrow, start arrow, end angle, start
angle

Parameters:

“range”: a set of cards

pos X, pos y: coordinates of starting/ending point (in cm)

handle x, handle y: coordinates of handle for starting/ending point (in cm)

html color: color of the curve, in the same format used for HTML, you can also specify a gradient
thickness: thickness of the curve (in cm), if omitted, the curve is 1 pixel wide

end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the curve

start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the curve

80

end angle: the angle (in degrees) of the spokes of the arrow at the end of the curve

start angle: the angle (in degrees) of the spokes of the arrow at the start of the curve

Note: if end/start angle is negative, the arrow is drawn closed (with three lines). >
Example: <
BEZIERS = 1, 0, O, 3, 0, #000000, 0.1
BEZIERS = 1, 0, 3, 3, 3, #FF0000, 0.1, 0.5
BEZIERS = 1, 0, 6, 3, 6, #00FF0O, 0.1, 0.5
BEZIERS = 1, 0, 9, 3, 9, #0000FF, 0.1, 0.5
Result: Figure 12 X

Figure 12
BLEED

This directive fills the space beyond a rectangle with the colors from the border of the rectangle, if you do not specify
the size of the outer rectangle, this directive fills the whole card.

Syntax:

BLEED = “range”, pos X1, pos y1, width1, heightl, pos_x2, pos_y2, width2, height2
Parameters:

“range”: a set of cards

pos x1: horizontal position (in cm)

pos y1: vertical position (in cm)

width1: width of the rectangle (in cm)

heightl: height of the rectangle (in cm)

pos x2: horizontal position (in cm) of the outer rectangle
pos y2: vertical position (in cm) of the outer rectangle
width2: width of the outer rectangle (in cm)

height2: height of the outer rectangle (in cm)

Examples:

BLEED = "1-10", 1, 1, 4, 7

BLEED = "1-10", 1, 1, 4, 7, 0.5, 0.5, 5, 6
BORDER

This directive draws a border around all the cards.
Syntax:

BORDER = type, html color, thickness, guidelines, guide color, mark/cross size, hor. guide offset, ver. guide offset,
num. of guides, hor. gap offset, ver. gap offset

Parameters:

type: the type of border can be chosen between:

81

RECTANGLE draws a rectangle (the default)

ROUNDED draws a rectangle with rounded corners
MARK draws cut marks (the length is set with the 6™ parameter
NONE no border

html color: color of the border, in the same format used for HTML, black if not specified

Note: if you want a different border color on each card, use instead RECTANGLE or ROUNDRECT

thickness: thickness of the border (in cm), if omitted, it is 1 pixel wide

Note: the thickness of the border is measured on two cards; if you use a thickness of 1 cm, for example, on each card
the border is 0.5 cm wide.

guidelines: this is for drawing lines beyond the card’s boundaries (over the page’s margins). You can choose between:

NONE no guidelines (the default)
SOLID solid lines

DOTTED dotted lines

DASHED dashed lines

MARK draws cut marks only (solid lines)

MARKDOT draws cut marks only (dotted lines)

MARKDASH draws cut marks only (dashed lines)

CROSS draws cut marks and crosses (solid lines, the length is set with the 61 parameter)
CROSSDOT draws cut marks and crosses (dotted lines, the length is set with the 6™ parameter)
CROSSDASH draws cut marks and crosses (dashed lines, the length is set with the 6™ parameter)
guide color: color of the guidelines, in the same format used for HTML, black if not specified

mark size: length of the cut marks (in cm) for MARK border type, and length of the arm of the cross (in cm) for
CROSS/CROSSDOT/CROSSDASH guideline type

hor. guide offset: horizontal guides are displaced of an offset (in cm), zero if not specified

ver. guide offset: vertical guides are displaced of an offset (in cm), equal to horizontal offset if not specified
num. of guides: number of guides drawn (0 means a single line)

hor. gap offset: a gap in horizontal marks (in cm), if zero (or not specified) the mark starts at the cards

ver. gap offset: a gap in vertical marks (in cm), if zero (or not specified) the mark starts at the cards
Examples:

BORDER

RECTANGLE

BORDER = ROUNDED, #0000FF, 0.5

BRUSH

This directive changes the style used for filling the shapes in these directives:

CIRCLE
ELLIPSE
FILL
HEXGRID
PIE
POLYGON
RECTANGLE
RHOMBUS
ROUNDRECT

82

STAR
TRIANGLE

Syntax:

BRUSH="range", type, “image file ”, width, height, flags
Parameters:

“range”: a set of cards

type: you can choose a type between these options:

SOLID draws a solid fill (the default)

DIAGLEFT fills with lines, drawn diagonally from top right to bottom left
DIAGRIGHT fills with lines, drawn diagonally from top left to bottom right
SQUARE fills with squares

CROSS fills with squares, rotated 45°

HORIZONTAL fills with lines, drawn horizontally

VERTICAL fills with lines, drawn vertically

CUSTOM fills with an image

“image file”: the image file used for filling the shapes
width: width of the image, in cm
height: height of the image, in cm

flags: one or more of the following flags:

A absolute position of the custom bitmap (relative to the card), the default
R relative position of the custom bitmap

T use the transparent color defined with CHROMAKEY

Examples:

BRUSH="1-10", SQUARE

BRUSH="1-10", CUSTOM, "dots.gif", 5%, 5

o\°

BUTTON

This directive draws a 3D rectangle over a set of cards. This directive works only if you have previously drawn
something in the specified area.

Syntax:

BUTTON = “range”, pos X, pos y, width, height, depth, flags
Parameters:

“range”: a set of cards

pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the rectangle (in cm)

height: height of the rectangle (in cm)

depth: width of the 3D border

83

flags: one or more of the following flags:

| from out to in
(0] from in to out
G gradient effect

Example:

RECTANGLE = 1,
RECTANGLE = 1,
BUTTON = 1, 1,
BUTTON = 1, 1,

0
Result: Figure 13

3, #00FFFF
3, #00FFFF
0.
0.

I

~ S S SN
I N
~ S S~ N
W W b
~ S S~ N

SRS

3,
3,

CANVAS

With this directive, the program splits the canvas (card 0) onto a range of cards. The canvas’ size can
be decided with a CANVASSIZE directive (see page 85).

Syntax: Figure 13
CANVAS = “range”, flags

Parameters:

“range”: a set of cards

flags: in this parameter you can specify a special behavior, possible values are:

H the canvas is horizontally centered in the cards
\Y% the canvas is vertically centered in the cards

Tip: You can view the content of the canvas bitmap with a click on the button “Canv” (to the right of the “Card
preview” button). You can reduce/enlarge it with a double-click on the image.

For example, if you must draw a large circle, to be split onto six cards, you can use the CANVASSIZE/CANVAS
directives, like in this script:

BORDER = MARK

CANVASSIZE = 18, 18

CANVAS = 1-6

ELLIPSE = 0, 0, 0, 18, 18, #O0O0O00FF#FF0000@360
FONT = Arial, 48, , #000000

TEXT= 1-9, {§}, 0, 0, 2, 2, CENTER, CENTER

This is the resulting printed page (I have added a number in the top-left corner of each card for helping identify them):

84

CANVASSIZE

This directive sets the size of the canvas (card number 0). If omitted, is 6 cm x 9 cm. The card 0 is a card that isn’t
printed with the deck, is can have a different size than the standard card and can be used in two ways: as a drawing
board to realize special effects, and to draw a larger card that must be split onto several standard cards, using the
CANVAS directive (see page 84).

Syntax:

CANVASSIZE = width, height

Example:

CANVASSIZE = 12, 18

CANVASWORK

This directive tells the program to draw the canvas (card 0) after drawing the range of cards specified in the parameter.
Syntax:

CANVASWORK = “range”

Parameters:

“range”: a set of cards

CARDS

This directive can be used to specify the total number of cards that compose the current deck.

Syntax:

CARDS = number

This directive is somehow obsolete, if you do not specify it, the total number of cards is deducted from the other
directives. For example, in that script the total number of cards is set to 20:

RECTANGLE = "1-5,15-20", O, O, 6, 9, #0OFFOO

But, if you also specify a CARDS directive, the cards’ number is forced. For example, in that script the total number of
cards is set to 15 (and the extra cards specified in RECTANGLE are ignored):

CARDS = 15
RECTANGLE = "1-5,15-20", O, O, 6, 9, #0OFFOO

85

CARDSIZE

This directive sets the size of cards (in cm). If omitted, is 6 cm x 9 cm.
Syntax:

CARDSIZE = width, height

Examples:

CARDSIZE 10

I
(@)
N

CARDSIZE = 2.5, 2.5

CASE

This directive is used in a structure SELECT...ENDSELECT to specify a code that must be executed when the value in
the SELECT is equal to a specific value (see page 160).

Syntax:

CASE = value

Parameters:

value: a string, number, label, or expression that can be evaluated

CASEELSE

This directive is used in a structure SELECT...ENDSELECT to specify a code that must be executed only if all the
CASEs directives are not executed (see page 160).

Syntax:
CASEELSE
Parameters:
None

CHROMAKEY

This directive sets the color to be treated as transparent during image loading (with IMAGE directive, see page 122).
The default transparent color, if CHROMAKEY was not used, is the color in the top-left pixel of the image.

Syntax:
CHROMAKEY = html color | corner type, level
Parameters:

corner type: the color will be picked from one of the four corners, or from the center of the image, or this option can be
deactivated:

TOPLEFT
TOPRIGHT
BOTTOMLEFT
BOTTOMRIGHT
CENTER

NULL

86

level: if specified, are treated as transparent also the colors within a level of difference from the base transparent color
(calculated as a distance in CIELab space).

Examples:

CHROMAKEY = #FFFFFF
CHROMAKEY = TOPLEFT
CIRCLE

This directive draws a circle in a set of cards.

Syntax:

CIRCLE = “range”, pos X, pos y, width, height, html color, html color, thickness
Parameters:

“range”: a set of cards

pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the circle (in cm)

height: height of the circle (in cm)

html color: border color of the circle, in the same format used for HTML, you can also specify a
gradient

html color: inner color of the circle, in the same format used for HTML, if not specified the inner color
is the same of border color. You can also specify “EMPTY” for a hollow circle or a gradient

Figure 14
thickness: thickness of the border of the circle (in cm), if omitted, the circle’s border is 1 pixel wide
Examples:

CIRCLE =1, 1, 1, 4, 7, #00FFO0O
Result: Figure 14

CIRCLE =1, 1, 1, 4, 7, #FFOOFF, EMPTY, 0.1
Result: Figure 15

ELLIPSE = 1, 1, 1, 4, 7, #FF0000#0000FFQ90 Figure 15
Result : Figure 16

CMYK

This directive modifies the color space of JPG/JPEG images saved with a SAVE directive (see page
157).

Syntax:

CMYK = “range”, switch, color profile Figure 16
Parameters:

“range”: a set of cards

The switch parameter can be set equal to:

87

ON to use the CMYK color space when a JPG/JPEG file format is specified
OFF to use the RGB color space (default)

If the former switch is ON, it can also be specified an optional color profile parameter, that can be an ICC/ICM file, or a
JPG/IPEG (from which a color profile is extracted).

COLOR

This directive modifies the colors, brightness, contrast, and saturation of images (and text) being rendered on a range of
cards. See directives IMAGE (page 122), ICONS (page 119), PATTERN (page 149) and TEXT (page 165).

Syntax:

COLOR = “range”, html color, bri-con-sat
Parameters:

“range”: a set of cards

html color: color used for rendering the image, in the same format used for HTML. If you want to maintain the original
colors, you must use a median gray (#808080)

bri-con-sat: a triplet of brightness, contrast, and saturation value, used for rendering the image, written in hexadecimal
format (like an html color), starting with an ampersand (&) character. If you want to maintain some of
the original values, use the median value (hexadecimal 80). If this parameter is omitted, are used three
neutral values (&808080)

Examples:
COLOR = 1, #00FFO0O0

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P
Result: Figure 17

COLOR = 1, #808080, &FF8080 Figure 17
IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P
Result: Figure 18

COLORCHANGE

This directive changes one color into another, in a rectangle area of a range of cards.

Syntax:

COLORCHANGE = “range”, pos x, pos y, width, height, html color source, html color destination,

level, flags, "mask file", schema Figure 18
Parameters:

“range”: a set of cards

pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the rectangle (in cm)

height: height of the rectangle (in cm)

html color source: a color value, in HTML format

html color destination: a color value, in HTML format

88

level: if zero, the source color is exactly the one specified in the 6™ parameter, otherwise are taken also colors that differ
from that source a value equal this parameter in one, two, or three RGB components; with B flag, is the number of times
the blur routine is applied

flags: one or more of the following flags:

S the replaced color is always the same (default)
V the replaced color changes, depending from the original one
B instead of changing colors, the selected rectangle is blurred

"mask file": the transparency layer of this image is used to determine where to apply the color change and the blur
effect

schema: this is a matrix of 5x5 numbers, used as factors to change the weight of each pixel, when the average is
calculated for the blur

COLORS

This directive writes from one to four colors into as many variables, that can be used instead of a color value.
Syntax:

COLORS = “range”, html color1, html color2 , html color3 , html color4, html color5
Parameters:

“range”: a set of cards

html colorl: a color value, in HTML format, that is stored into variable #272272
html color2: a color value, in HTML format, that is stored into variable #YYYYYY
html color3: a color value, in HTML format, that is stored into variable #XxXXxXX
html color4: a color value, in HTML format, that is stored into variable #WWWWWw
html color5: a color value, in HTML format, that is stored into variable #vvvvvv

Instead of a color, you can use another variable, or the syntax #X¢Y to read a color located at position X, Y of the
current card (you can use also % with each value, for example: #50%¢50%0).

With the syntax #X1¢Y1¢X2¢Y?2 you can read the most used color in an image, (the image starts from X1, Y1 and end
to X2, Y2).

With the syntax #X1¢Y1¢X2¢Y2¢Min¢gMax you can read the most used color in an image, (the image starts from X1,
Y1 and end to X2, Y2), excluding colors with percent brightness lower than Min and higher than Max.

With the syntax #AAAAAA>#BBBBBB<#CCCCCC you can select between two colors: if the brightness of color #A
is more or equal to 50%, the variable is set to color #B, if the brightness is less than 50%, the variable is set to color #C.
This condition can be modified by using the syntax #AAAAAA>#BBBBBB<#CCCCCC$Xnumber, where number is
a % value, and X is a character from this list:

Red component
Green component
Blue component
Hue value
Saturation value
Brightness value

rOITWOOXo

Every color can be also modified adding a value for saturation and a value for brightness change (in percent), with the
syntax #000000+saturation+brightness (the values for saturation and brightness can also be negatives).

89

Example:
COLORS = 1, #FF0000
COLORS = 2, #00FFO0O

COLORS = 3, #0000FF
RECTANGLE = 1-3, 0, 0, 100%, 100%, #Z72722%7

COMMENT

This directive sets the character used for comments, and eventually activate the in-line comments. The utilization of this
directive is equivalent to the settings in the "Config" section of the program.

Syntax:

COMMENT = character, INLINE

Parameters:

character: the character used for comments, it must be the first character of the line
INLINE: the same character (doubled) will be used for in-line comments
Examples:

COMMENT = &
& This i1s a comment

COMMENT = !, INLINE
RECTANGLE=1, 0, 0, 6, 9, #00FFO0O0 !! This is another comment

COMPARE

This directive compares the cards built with the current script with those built with the filename specified as a parameter
and creates a range (to be used with PRINT=COMPARE) with only the cards which are different.

Syntax:

COMPARE = “filename”

Parameter:

“filename”: the filename to be compared with the current script
Example:

COMPARE="script verl.txt"
PRINT=COMPARE

COPY

This directive does a copy-and-paste of a section of a card into another position on the same card. If you want to copy a
section of a card onto another card, you must use the SAVE and IMAGE directives (see page 157).

Syntax:
COPY = “range”, pos X1, pos y1, widthl, heightl, pos x2, pos y2, width2, height2, angle, flags
Parameters:

“range”: a set of cards

90

pos x1: starting horizontal position (in cm) of the image
pos y1: starting vertical position (in cm) of the image
width1: starting width of the image (in cm)

height1: starting height of the image (in cm)

pos x2: ending horizontal position (in cm) of the image
pos y2: ending vertical position (in cm) of the image
width2: ending width of the image (in cm)

height2: ending height of the image (in cm)

angle: angle of image rotation, can be 0 for no rotation

flags: in this parameter, you can specify a special behavior for the image, possible values are:

H Horizontal mirror
Vv Vertical mirror
Example:

IMAGE = 1, " c:\images\earth.jpg", 0, 0, 3, 3.5, 0, P
FONT = Arial, 16, , #FFFFFF, #00000

TEXT = 1, "Earth", 0, 3.5, 3, 1, CENTER, CENTER
copy =1, 0, 0, 3, 4.5, 3, 0, 3, 4.5, 0, H

copy =1, 0, 0, 3, 4.5, 0, 4.5, 3, 4.5, 0, V

cCoPYy =1, 0, 0, 3, 4.5, 3, 4.5, 3, 4.5, 0, HV Figure 19

Result: Figure 19

COPYCARD

This directive duplicates cards from a source range to a destination range. Both source and destination ranges can be
single cards.

Syntax:

COPYCARD = “destination range”, “source range”, flags
Parameters:

“destination range”: a set of cards

“source range”: a set of cards

flags: one or more of the following flags:

F rotate the cards upside down
Example:
COPYCARD = "5-8", "1-2"

This is the deck, before the directive:

CARD 1
CARD 2
CARD 3
CARD 4

91

This is the deck, after the directive:
CARD 1
CARD 2
CARD 3
CARD 4
CARD 1
CARD 2

CARD 1
CARD 2

CORRECTION

This directive enables/disables the pixel correction. If enabled, one pixel is added to width and heights of ELLIPSE,
RECTANGLE, ROUNDRECT, and RHOMBUS directives. The correction default is ON.

Syntax:

CORRECTION = “range”, switch
Parameters:

“range”: a range of cards

switch: values accepted are:

ON Pixel correction enabled
OFF Pixel correction disabled

Example:
CORRECTION = 1, OFF

COUNTER

This directive sets a counter to a value. A counter is a variable that can be used in expressions (see page 56). This
directive can be used with a dice (see DICE directive, page 93) to revert it into a counter. Note: after the build, a
warning is issued if one counter is used in an expression without being initialized.

Syntax:

COUNTER = “range”, counter name, counter value, counter inc, counter limit

Parameters:

“range”: a set of cards

counter name: a counter letter(s)

counter value: a value, it can be a fixed number or an expression

counter inc: each time the counter is used, is incremented of this value (or decremented, if negative)

counter limit: if the value of the counter is higher of this value, the counter is reset at the starting value

Valid counters for integer values:

ABCDEVFGHTIUJ

Valid counters for floating values:

92

AA BB CC DD EE FF GG HH II JJ

Examples

COUNTER = "1", A, 100
COUNTER = "1-10", B, 2D6
DECK

This directive prepares a deck of cards to be used in the “Virtual table” option (see page 67). If you do not use this
directive, the program prepares a deck to be used in the virtual table with all the cards.

Syntax:

DECK = “range”, “deck name”, html color, height, flag, back range, pos x, pos y, starting frames, frames, rules
Parameters:

“range”: a set of cards

“deck name”: the name of the deck

html color: deck color in the same format used for HTML

height: height of the deck (in pixels), you can also specify a % of the screen’s height. The deck’s width is proportional
to the height

flag: you can specify these options:

R the deck is shuffled (the default)
N the deck is not shuffled (the order of the cards is that one specified in “range” parameter)

back range: if you specify a number for this parameter, for the deck image (back of cards) is used that card (taken from
the deck) instead of a color. You can also use a range of cards for this parameter

pos X: horizontal position for the deck (in pixels), you can also specify a % of the screen’s width

pos y: vertical position for the deck (in pixels), you can also specify a % of the screen’s height

starting frames: if specified, the deck is placed in a frame randomly taken from this list

frames: when a card from this deck is moved on the table, it is positioned in the nearest frame from this list

rules: when a card from this deck is moved on the table, are enforced the rules specified in this list (see page 67 for a
list of rules)

Note: the DECK directive is not compatible with the DUPLEX directive, do not use both in the same script.

Example:
DECK = 1-13, "Hearts", #FF0000, 50%

DEPTH

This directive changes the number of bitplanes (and therefore the maximum number of colors) used in storing the cards’
images, so you can use less RAM and can manage more cards.

Syntax:

DEPTH = “range”, bitplanes

93

Parameters:
“range”: a set of cards

The bitplanes parameter can be set equal to:

24 16 million of colors (the default)
16 65536 colors

8 256 colors

4 16 colors

DICE

This directive converts one counter into a dice (it can be used later in expressions).
Syntax:

DICE = “range”, counter, “dice range”, dice number, flags, defaultl, default2, reroll
Parameters:

“range”: a set of cards

counter name: valid counters are:

ABCDEFGHTIUJ

“dice range”: a range of values, from which is taken the result of the dice roll; if a “>>” is added, the result adds
another roll; if a “<<” is added, the result subtracts another roll; if a "**" is added, the result is rerolled

dice number: the number of dice rolled

flags: the syntax for this parameter is fng, where f is the flag that specify how the dice are grouped, n is a number that
specify how much dice are used, and g is the flag that specify how the dice to be grouped are chosen from the main pool

The 1% flag can be chosen between:

+ sum (the default, if not specified)
* multiply

- subtract

absolute value after subtracting
£ concatenate

N

concatenate without duplicates

The 2" flag can be chosen between:

+ upper dice (the default, if not specified)

- lower dice

defaultl: the value to be used if the number before the dice is missing

default2: the value to be used if the number after the dice is missing

reroll: the times the dice are rerolled if the result is marked with “**”

Example, rolling four dice (with values from one to six) and sum the upper three:
DICE = 1, A, "1-6", 4, +3+

Example, rolling four open dice (subtracting dice for one, adding dice for six):

DICE = 1, A, "1<<,2,3,4,5,6>>", 4

94

Example, rolling four dice, and rerolling them three times when the result is “-1:

DICE = 1, A, "-1**,-1*x,0,0,1,1", 4, , , ,3

DISPLAY

This directive draws a list of cards to the canvas (card 0), resizing it accordingly, and save it with a filename (if
specified). If the range is omitted, all the deck is drawn and saved. The width parameter is the number of cards in
horizontal, if omitted, is chosen the maximum number from the factors of the total number of the cards. Note that if
there are N cards, and N is a prime number, the default result will be a line of N cards (since the only other number that
is a divisor of a prime number is one); in this case you can specify a different width, and the last cards would be filled
with blanks. Instead of specifying starting and ending card, you can use a range as 5th parameter (leave the other at
zero). If you specify a filename with a question mark (?) as a first character, the program asks you if the existing file
must be overwritten.

Syntax:

DISPLAY = ”image file”, first card, last card, width, “range ”, transparent color, “mask file”, bitplanes
Parameters:

“image file”: the name of the saved file

first card: the first card drawn in the file

last card: the last card drawn in the file

width: the width (in cards) of the rectangle, you can also specify a height with the syntax widthxheight, in this case
multiple files can be created (replacing a § symbol with a counter)

“range”: the set of cards drawn in the file

transparent color: for PNG and GIF, if this parameter is specified, the file is saved with this color as transparent, for
PNG files you can also specify more than one color (for example #0000FF#00FF00 for two colors) and add a level of
transparency, in the format #xxyyyyyy, where xx = transparency level (from 00 = full transparent to FF = full solid) and
yyyyyy = color. Another format accepted is #xxyyyyyyzzz, where zzz is a number that is used as “likeness” of the color
to be treated as transparent. Finally, you can also specify a G at the end to proportionally adjust the level of
transparency to the level of likeness.

“mask file”: if this parameter is specified (a PNG image), is used as transparency mask for the saved image (note that in
this case the “transparent color” is not used)

bitplanes: sets the depth of the saved image, and can be set equal to:

24 16 million of colors (the default)

16 65536 colors

8 256 colors

4 16 colors

Example:

DISPLAY = "c:\deck.png", 1, 10
DOWNLOAD

This directive downloads a file from Internet if the file does not already exist in the specified path.
Syntax:
DOWNLOAD = URL, “filename”

Parameters:

95

URL: the URL for a file, it must start with http:// or https://

“filename”: the path and filename for the downloaded file, if omitted, the path is the current folder, and the name is
taken from the URL parameter.

Example:

DOWNLOAD = http://game-icons.net/icons/delapouite/originals/png/sheep.png

You can also use two sequences, one for the URLs and one for the filenames.

DPI

This directive sets the resolution of cards (in Dots Per Inch). If omitted, is 300 (the default for printing); if you want to
show the cards on screen, you can use a value of 150.

Syntax:
DPI = dpi number

Note that with a value too high, the time of rendering can be exceptionally long, and the program uses more memory (or
disk space).

Example:
DPI = 150

DRAW

This directive draws several cards from a deck in the “Virtual table” option (see page 67). If you do not use this
directive, the program prepares a deck to be used in the virtual table with all the cards. If you specify a new name, a
deck is created with the card drawn, if you leave the 2™ parameter empty, the cards drawn are shown into the table as
separated objects.

Syntax:

DRAW = “deck name”, “deck name new”, number, flag, pos x, pos y, starting frames

Parameters:

“deck name”: the name of the deck from which the cards are drawn

“deck name new”: the name of the deck created with the cards drawn

number: the number of cards drawn

flag: you can specify these options:

U the cards are drawn face up
D the cards are drawn face down (the default)

pos X: horizontal position for the cards/deck drawn (in pixels), you can also specify a % of the screen’s width
pos y: vertical position for the cards/deck drawn (in pixels), you can also specify a % of the screen’s height
starting frames: if specified, the cards drawn are placed in frames randomly taken from this list

Example:

DRAW = "standard", "new", 10, U

96

http://game-icons.net/icons/delapouite/originals/png/sheep.png

DUPLEX
This directive copies a card (or a range of cards) to another position (or range) calculated automatically by the software,
it is useful to manage duplicates or synchronize the front and back of cards for a duplex printing. You can also specify
multiple ranges in 1%t and 2" parameter as sequences of ranges. See also PRINT directive (see page 152).

Syntax:

DUPLEX = “range front”, “range back”, number

Parameters:

“range front”: a card or a range of card to be copied

“range back”: a card or a range of card to be copied, front-to-back with the card(s) specified in the 1% parameter
number: if specified, the card is replicated several times; if not specified, it is treated like one copy

Example:

DUPLEX = 1-10, 11

DUPLEX 12-21, 22, 2
DUPLEX = 1-3[4-6, 718

Note: since nanDECK need to add cards to the deck, you must not use a CARDS directive in the script.

Note: the DUPLEX directive is not compatible with the DECK directive, do not use both in the same script.

EDGE

This directive changes the style used for drawing the lines / boundaries with these directives:

BEZIER
BEZIERS
CIRCLE
ELLIPSE
HEXGRID
LINE
LINERECT
GRID

PIE
POLYGON
RECTANGLE
RHOMBUS
ROUNDRECT
STAR
TRACK
TRACKRECT
TRIANGLE

Syntax:

EDGE = “range”, type, pattern, tip, join
Parameters:

“range”: a set of cards

type: you can choose a type between these options:

SOLID draws a solid line (the default)

97

INSIDE the same as solid, but inside the rectangle

DASH draws a dashed line

DOT draws a dotted line

DASHDOT draws a line alternating a dash and a dot
DASHDOTDOT draws a line alternating a dash and two dots
NULL does not draw a border

CUSTOM draws a line using a custom pattern

pattern: a pattern for the custom style, this pattern can be composed of:

@] dot
D dash
S space

These letters can be repeated, for example “OSDSOS” is a valid pattern.

tip: you can choose a pen tip between these options:

ROUND the pen tip is a circle (the default)
SQUARE the pen tip is a square
FLAT the pen tip is a line

join: you can choose the method to join the lines between these options:

ROUND the angles are rounded (the default)
BEVEL the angles are blunted

MITER the angles are squared
ELLIPSE

This directive draws an ellipse in a set of cards.

Syntax:

ELLIPSE = “range”, pos X, pos Y, width, height, html color, html color, thickness
Parameters:

“range”: a set of cards

pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the ellipse (in cm)

height: height of the ellipse (in cm)

html color: border color of the ellipse, in the same format used for HTML, you can also specify a
gradient

html color: inner color of the ellipse, in the same format used for HTML, if not specified the inner

color is the same of border color. You can also specify “EMPTY” for a hollow ellipse or a gradient Eiaure 20
igure

thickness: thickness of the border of the ellipse (in cm), if omitted, the ellipse’s border is 1 pixel wide

Examples:

ELLIPSE =1, 1, 1, 4, 7, #00FF0O
Result: Figure 20

ELLIPSE = 1, 1, 1, 4, 7, #FFOOFF, EMPTY, 0.1

98 Figure 21

Result: Figure 21

ELLIPSE =1, 1, 1, 4, 7, #FFOOOO#0000FF@90
Result: Figure 22

ELSE

This directive is used in a structure IF...ENDIF to specify a code that must be executed only if the test
in the IF directive is not true (see page 121).

Syntax:

ELSE

Figure 22

Parameters:
none

ELSEIF

This directive is used in a structure IF...ENDIF to specify a code that must be executed only if the test in this line is
true and the test in the first IF directive is false (see page 121).

Syntax:
ELSEIF = valuel operator value2

Parameters:
value: a string, number, label, or expression that can be evaluated

operator: the condition is evaluated using the two values and this operator, you can use one operator from the same
listed for the IF directive

END

This directive is used to close a MACRO...END structure (see page 143).
Syntax:

END

Parameters:

none

ENDFRAME

This directive closes a FRAME...ENDFRAME structure (see page 108).
Syntax:

ENDFRAME

Parameters:

none

99

ENDIF

This directive is used to close an IF...ENDIF structure (see page 121).
Syntax:

ENDIF

Parameters:

none

ENDIMAGEENC

This directive closes an IMAGEENC...ENDIMAGEENC structure (see page 125).
Syntax:

ENDLAYER

Parameters:

none

ENDLAYER

This directive closes a LAYER...ENDLAYER structure (see page 130).
Syntax:

ENDLAYER

Parameters:

none

ENDLINK

This directive closes a LINK...ENDLINK structure (see page 134).
Syntax:

ENDLINK

Parameters:

none

Example:

linkmulti=num

link=

num, string

1,alpha

2,beta

3, gamma

endlink

[all]="1-{ (num) }"

font=Arial, 48, ,#000000

text=[all], [num],0,0,100%,50%
text=[all]l, [string],0,50%,100%,50%

100

ENDSECTION
This directive closes a SECTION...ENDSECTION structure (see page 160).

Syntax:

ENDSECTION

Parameters:

none

ENDSELECT

This directive is used to close a SELECT...ENDSELECT structure (see page 160).
Syntax:

ENDSELECT

Parameters:

none

ENDSEQUENCE

This directive is used to close a SEQUENCE...ENDSEQUENCE structure (see page 161).
Syntax:

ENDSEQUENCE

Parameters:

none

ENDVISUAL

This directive closes a VISUAL...ENDVISUAL structure (see page 174).
Syntax:

ENDVISUAL

Parameters:

none

EXPRESSION

This directive specifies the characters used to define expressions to be evaluated in texts in HTMLTEXT (see page 118)
and RTFTEXT (see page 157) directives.

Syntax:

EXPRESSION = exp. HTML start, exp. HTML end, exp. RTF start, exp. RTF end
Parameters:

exp. HTML start: character(s) used to define start of expressions in HTMLTEXT directive

exp. HTML end: character(s) used to define end of expressions in HTMLTEXT directive

101

exp. RTF start: character(s) used to define start of expressions in RTFTEXT directive
exp. RTF end: character(s) used to define end of expressions in RTFTEXT directive
Example:

EXPRESSION = {, }

FACTORS

This directive sets two factors used in elements printed with HTMLTEXT (see page 118).
Syntax:

FACTORS = background size factor, font size factor

Parameters:

background size factor: the size of the background printed with B flag is multiplied for this value
font size factor: the size of the font is multiplied for this value

Example:

FACTORS = 1.2

FILL

This directive fills a region with a color (the region is delimited by another color).
Syntax:

FILL = “range”, pos X, pos y, html fill color, html border color, flags

Parameters:

“range”: a set of cards

pos x: horizontal initial position (in cm) of the fill

pos y: vertical initial position (in cm) of the fill

html fill color: color of the fill. You can also specify a gradient

html border color: this is the area color (or boundary color) for the fill

flags: one of the following flags

A the 51 parameter is the color of the area to be filled
B the 5 parameter is the color of the boundary that enclose the area to be filled

If you do not specify a flag, it is considered B as default.

Example:
LINE = 1, 0, 1, 6, 1, #0000FF, 0.1 ,/
LINE = 1, 0, 8, 6, 8, #0000FF, 0.1
LINE = 1, 1, 0, 1, 9, #0000FF, 0.1
LINE = 1, 5, 0, 5, 9, #0000FF, 0.1
LINE = 1, 0, 9, 6, 0, #0000FF, 0.1
FILL = 1, 2, 2, #FFFFO0#FF8000@0, #0000FF
/l
102 7

Figure 23

FILL =1, 2, 7, #FF8000#FFFF00@O, #O0OOOFF
Result: Figure 23

FLAGS

This directive sets a set of flags to all the subsequent directives in the script. If you want to remove a flag instead of
adding it, use before the “-” symbol (minus).

Syntax:

FLAGS = “range”, directive, flags
Parameters:

“range”: a set of cards

directive: the directive affected by the flags
flags: the flag or flags to be set

Example:

FLAGS = 1-10, HTMLTEXT, BE

FOLD

This directive copies a card (or a range of cards) to another position (or range) calculated automatically by the software,

it is useful when you want to print fronts and backs of cards on a single page, that can be folded on the horizontal or

vertical axis and glued (note that with the horizontal folding the backs are rotated 180°). You can also specify multiple

ranges in 1%t and 2™ parameter as sequences of ranges. See also PRINT directive (see page 152).

Syntax:

FOLD = “range front”, “range back”, number, flags

Parameters:

“range front”: a card or a range of card to be copied

“range back”: a card or a range of card to be copied, front-to-back with the card(s) specified in the 1% parameter,

number: if specified, the card is replicated several times; if not specified, it is treated like one copy

flags: one or more of the following flags

H the folding line is horizontal (if not specified, this is the default folding for landscape page orientation)

\ the folding line is vertical (if not specified, this is the default folding for portrait page orientation)

A if there is a horizontal folding line, the vertical gap is augmented until there is an even number of rows, if there
is a vertical folding line, the horizontal gap is augmented until there is an even number of columns

Example:

FOLD = 1-10, 11

FOLD = 12-21, 22, 2
DUPLEX = 1-314-6, 718

| Note: since nanDECK need to add cards to the deck, you must not use a CARDS directive in the script.

| Note: the FOLD directive is not compatible with the DECK directive, do not use both in the same script.

103

FOLDER

This directive sets the current working directory (if you do not specify it, it will be used the folder where the script is
located).

Syntax:

FOLDER = “folder”

Parameters:

“folder”: the folder to be used as current working directory
Example:

FOLDER = "c:\projects\test"

FONT

This directive sets the font for any following TEXT command (see page 166). Note that there is not any reference to a
range of cards. If you want a ranged command, you can use FONTRANGE instead (see page 106).

Syntax:

FONT = “font name”, font size, style, html color font, html color background, outline x, outline y, step x, step y, char
space

Parameters:

“font name”: character font name (string)

font size: character font size, in typographical points (1 point = 1/72 of an inch)
style: character font style and flag used for visualization; values accepted are:

bold

italic

underline

strikeout

transparent font background

do not clip text at the boundary

circular text

circular text, reversed

circular text, half circumference

circular text, one quarter circumference

circular text, three quarter circumference

the text follows the curve drawn with the last BEZIER directive

the size is reduced until the text fits in the rectangle specified by TEXT directive (this value is stored in TF var)
vertical text

do not clip text area beyond the rectangle

transparent font text (flag T is ignored)

the text is placed in the rectangle’s diagonal (from top-left to bottom-right)
the text is placed in the rectangle’s diagonal (from top-right to bottom-left)
gradient is calculated from the text instead of from the rectangle

the text is shrunk if too large to fit the rectangle

the text is stretched if too small to fit the rectangle

<X XPOUOIULTNMOINO=Zd0nCc—w

html color font: character color, in the same format used for HTML, you can also specify a gradient

html color background: background color, in the same format used for HTML, you can also specify a gradient

104

This parameter can be omitted (it will be used the last background color used, or white if none was specified), if you
specified T as a style flag, the background color will not be used

Tip: you can choose the font with a Windows standard dialog, clicking on the button “Insert” and choosing the menu
voice “Font”.

Examples (the difference was in the T flag in the 2" FONT command):

RECTANGLE = 1, 0, 0, 6, 4, #FF000O0

FONT = "Arial", 32, B, #FFFFFF, #000O0FF
TEXT = 1, "TeEsT", 0, 1, 6, 2, center
Result: Figure 24

RECTANGLE = 1, 0, 0, 6, 4, #FF000O0

FONT = "Arial", 32, BT, #FFFFFF, #0000FF Figure 24
TEXT = 1, "TEST", 0, 1, 6, 2, center

Result: Figure 25

outline x: horizontal expansion in cm, with that parameter the text will be replicated horizontally from
—X to +X

TEST

outline y: vertical expansion in cm, with that parameter the text will be replicated vertically from -y to
ty

step x: the number of times the text is printed horizontally

step y: the number of times the text is printed vertically Figure 25
char space: spacing between characters in circular text (if not present, the text is justified)

Example:

FONT = "Arial", 32, B, #FFFFFF, #0000FF, 0.1, 0.1 m
TEXT = 1, "TEST", 0, 1, 6, 2, center

Result: Figure 26

FONTALIAS

This directive enables/disables the font anti-aliasing, using the Operating System’s routines. It is useful
to remove colored pixels in the text’s boundaries, especially when using HTMLTEXT (see page 118)
or RTFTEXT (see page 157) directives with transparent background. Figure 26

Syntax:

FONTALIAS = “range”, switch
Parameters:

“range”: a range of cards
switch: values accepted are:

ON Font anti-aliasing enabled
OFF Font anti-aliasing disabled

Example:

{[html on]="<style type='text/css'>p {font-size: 32px}</style><p>
ANTIALIASING ON</p>"}
{[html off]="<style type='text/css'>p {font-size: 32px}</style><p>
ANTIALIASING OFF</p>"}

105

Figure 27

ELLIPSE = 1, 0, 0, 6, 3, #FF000O

ELLIPSE = 1, 0, 3, 6, 3, #FF000O

FONTALIAS = 1, ON

HTMLTEXT = 1, [html on], 0, 0, 6, 3, #FFFFFF, 0, T
FONTALIAS = 1, OFF

HTMLTEXT = 1, [htmlioff}, 0, 3, 6, 3, #FFFFFF, 0, T
Result: Figure 27

FONTCHANGE

This directive changes a font in the script with another. It is useful when you want to test a script on a computer that
does not have a font, and you did not want to change all the occurrences (or use a label).

Syntax:

FONTCHANGE = “old font”, “new font”
Parameters:

“old font™: the font that you want to be changed

“new font”: the font that you want to use instead

Example:
FONTCHANGE = "Calibri", "Times New Roman"
FONTRANGE

This command is equivalent to FONT (see page 104) but is applied to a range of cards (specified by the 1%t parameter).
Syntax:

FONTRANGE = “range”, “font name”, font size, style, html color font, html color background, outline x, outline y, step
X, step y, char space

Parameters:

“range”: a range of cards

“font name”: character font name (string)

size: character font size, in typographical points (1 point = 1/72 of an inch)
style: character font style and flag used for visualization; values accepted are:

bold

italic

underline

strikeout

transparent font background

do not clip text at the boundary

circular text

circular text, reversed

circular text, half circumference

circular text, one quarter circumference

circular text, three quarter circumference

the text follows the curve drawn with the last BEZIER directive
the size is reduced until the text fits in the rectangle specified by TEXT directive
vertical text

do not clip text area beyond the rectangle

transparent font text (flag T is ignored)

OUTKTNMOITOZ-IwC—®

106

the text is placed in the rectangle’s diagonal (from top-left to bottom-right)
the text is placed in the rectangle’s diagonal (from top-right to bottom-left)
gradient is calculated from the text instead of from the rectangle

the text is shrunk if too large to fit the rectangle

the text is stretched if too small to fit the rectangle

<X>r®o

html color font: character color, in the same format used for HTML, you can also specify a gradient

html color background: background color, in the same format used for HTML, you can also specify a gradient
outline x: horizontal expansion in cm, with that parameter the text will be replicated horizontally from —x to +x
outline y: vertical expansion in cm, with that parameter the text will be replicated vertically from -y to +y

step x: the number of times the text is printed horizontally

step y: the number of times the text is printed vertically

char space: spacing between characters in circular text (if not present, the text is justified)

Tip: you can choose the font with a Windows standard dialog, clicking on the button “Insert” and choosing the menu
voice “Font”.

FOOTER

This directive prints a text in the page’s footer specified by a page range (with a syntax like cards’ range).
Syntax:

FOOTER = “page range”, “text”, horizontal alignment

Parameters:

“page range”: a set of pages, if empty the text is printed onto all the pages

“text”: the text to be printed, you can also use four variables:

{P} page number

{N} total page number

{D} date

{T} time

horizontal alignment: the text’s horizontal alignment in the page, values accepted are:
LEFT left aligned

CENTER centered

RIGHT right aligned

If not specified, the text is centered.

Examples:

FOOTER = "1-3", "Deck 1", CENTER
FOOTER = "", "printed {D} {T}", RIGHT
FOR

This directive executes the code between a FOR row and a NEXT row (see page 146), exiting when the counter value
is equal to end value, starting from start value and adding a step value at each loop.

107

Syntax:
FOR = counter name, start, end, step
Parameters:
counter name: the variable counter storing the value, can be chosen between ABCEFGH 1]
start: starting value for the counter
end: ending value for the counter
step: increment for counter at each loop, if not specified is assumed to be 1
Example:
FOR = A, 1, 4

FOR = B, 1, 7

RECTANGLE = 1, A, B, 1, 1, #FF0000, #00O0OOFF

NEXT

NEXT
Result: Figure 28 Figure 28

FRAME

This directive is used in a FRAME...ENDFRAME structure to define frames using characters in rectangular patterns,
for example, if you want to define three frames, one for the card, one for an image and one for the text below, you can
write these lines:

FRAME
AAAAAA
ABBBBA
ABBBBA
ABBBBA
ACCCCA
ACCCCA
AAAAAA
ENDFRAME

The result is equal to these lines:

<A>=0%,0%,100%,100%

=16.7%,14.3%,66.7%,42.9%

<C>=16.7%,57.1%,66.7%,28.6%

With this method, you can create 36 frames (one for each letter/number), the names are case-insensitive.

Syntax:

FRAME = list split frames

Parameters:

list split frames: if you add here some frames, these frames are treated individually, and are not merged in a single

frame. In the last example, if you specify B as a parameter, instead of one frame, the program creates twelve frames (all
named B)

GAP

This directive sets a space between cards in printed pages. If the directive GAP is not specified, there will be no gap
between cards.

108

Syntax:

GAP = horizontal gap, vertical gap, line switch, fill switch, guidelines, guide color, cross size
Parameters:

horizontal gap: horizontal space (in cm)

vertical gap: vertical spaces (in cm)

line switch: values accepted are:

ON to enable a guideline in the middle of the gap
OFF todisable it (the default)

fill switch: values accepted are:

ON when using CROSS guidelines, they are prolonged across the middle of the gap
OFF the middle of the gap is not drawn (the default)

guidelines: the graphic type of the middle guideline (if present). You can choose between:

NONE no guideline

SOLID solid lines

DOTTED dotted lines

DASHED dashed lines

MARK draws cut marks only (solid lines)

MARKDOT draws cut marks only (dotted lines)

MARKDASH draws cut marks only (dashed lines)

CROSS draws cut marks and crosses (solid lines, the length is set with the 6th parameter)
CROSSDOT draws cut marks and crosses (dotted lines, the length is set with the 6th parameter)
CROSSDASH draws cut marks and crosses (dashed lines, the length is set with the 6th parameter)

guide color: color of the middle guideline (if present), in the same format used for HTML, same color of other
guidelines if not specified

cross size: length of the arm of the cross (in cm) for CROSS/CROSSDOT/CROSSDASH guideline type

If the directive GAP is not specified, there is no gap between cards.

Example:
GAP = 1, 1
GRADIENTS

This directive can be used to specify additional parameters used in drawing gradients, or to add other gradients color; it
works on every directive that uses gradients, and you can use more than one GRADIENTS directive.

Syntax:

GRADIENTS = "range", compression, rotation, flags, pos x, pos y, html color

Parameters:

“range”: a set of cards

compression: a factor used to draw gradient bands narrowly (greater than 1) or broadly (less than 1)
rotation: each axis is rotated of this angle (in degrees)

flags: you can use the following flags:

109

N each pixel is drawn in the color of the closest axis between the two that define the sector in which it resides

F each pixel is drawn in the color of the farthest axis between the two that define the sector in which it resides

M each pixel is drawn in the average color of the two axis that defines the sector in which it resides

A each pixel is drawn in the average color of all axes

P each pixel is drawn in the average color of all axes, proportionally to the distance from the point specified with
5t and 6™ parameters

D delete all current gradients

pos x: horizontal position (in cm) of point used with P flag

pos y: vertical position (in cm) of point used with P flag

html color: in the same format used for HTML, you can also specify a gradient

GRID

This directive draws a grid in a set of cards.

Syntax:

GRID = "range", pos X, pos y, width, height, html color, thickness, horiz. cells, vert. cells, pattern
Parameters:

“range”: a set of cards

pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the rectangle (in cm)

height: height of the rectangle (in cm)

html color: border color of the grid, in the same format used for HTML, you can also specify a gradient
thickness: thickness of the grid (in cm), if set to zero, the grid’s border will be 1 pixel wide
horiz. cells: number of horizontal cells

vert. cells: number of vertical cells

pattern: a pattern for the line used to draw the grid, this pattern can be composed of:

] dot
D dash
S space

These letters can be repeated, for example “OSDSOS” is a valid pattern.

Example:

GRID = 1, 1, 1, 4, 4, #FFOOOO#0000FF@90, 0.1, 3, 3
Result: Figure 29

HEADER Figure 29

This directive prints a text in the page’s header specified by a page range (with a syntax like cards’ range).

Syntax:

110

HEADER = “page range”, “text”, horizontal alignment

Parameters:

“page range”: a set of pages, if empty the text is printed onto all the pages
“text”: the text to be printed, you can also use four variables:

{P} page number

{N} total page number

{D} date

{T} time

horizontal alignment: the text’s horizontal alignment in the page, values accepted are:
LEFT left aligned

CENTER centered

RIGHT right aligned

If not specified, the text is centered.

Examples:

HEADER = "1-3", "Deck 1", CENTER
HEADER = "", "printed {D} {T}", RIGHT
HEXGRID

This directive draws a hexagonal grid in a set of cards.

Syntax:

HEXGRID = “range”, pos X, pos Yy, width, height, hex side, flags, html color, html color, thickness
Parameters:

“range”: a set of cards

pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the rectangle (in cm)

height: height of the rectangle (in cm)

hex side: length of the hexagon’ side (in cm)

flags: you can use the following flags:

add a dot in the center of the hexagon

add a letter in each hexagon (A, B, C...)

add a number in each hexagon (1, 2, 3...)

add a zero-padded number in each hexagon (01, 02, 03...)

add two numbers in each hexagon (11, 12, 13...21, 22, 23...)

add a letter and a number in each hexagon (A1, A2, A3...B1, B2, B3...)
add a dot as a separator for C flag

add a minus as a separator for C flag

add an underscore as a separator for C flag
do not draw the grid (useful if you want only a dot or a label)

moO oVvzZzro

111

html color: border color of the grid, in the same format used for HTML, you can also specify a gradient

html color: inner color of the hexagons, in the same format used for HTML, if not specified the inner color is the same
of border color. You can also specify “EMPTY” for a hollow (and transparent) hexagon or a gradient __ __

thickness: thickness of the grid (in cm), if omitted, the grid’s border is 1 pixel wide
Example:
FONT = ARIAL, 10, , #000000

HEXGRID = 1, 0, 0, 6, 9, 1, N, #000000, #00FFOO
Result: Figure 30

HTMLBORDER

This directive draws a border around a text with a specific tag (that was created with HTMLFONT directive, see page
114) to be used in HTMLTEXT directive (see page 118); this directive works only with E flag in HTMLTEXT (MS
Explorer).

Figure 30

Syntax:

HTMLBORDER = “html tag”, type, html color, thickness, gap top, gap left, gap right, gap bottom, corner rounding,
html color background, alpha, min. height, max. height

Parameters:

"html tag™: a name used for referencing the font

type: the style used to draw the border, can be one of this keywords:
RECTANGLE

DOTTED

DASHED

DOUBLE

GROOVE

RIDGE

INSET

OUTSET

NONE

html color: the color of the border, in the same format used for HTML
thickness: thickness of the border (in cm)

gap top: the gap between top border and the text, in cm

gap left: the gap between left border and the text, in cm

gap right: the gap between right border and the text, in cm

gap bottom: the gap between bottom border and the text, in cm

corner rounding: the corners of the border are rounded; the value is the radius of the circle used

html color background: the color of the inner rectangle, in the same format used for HTML

alpha: level of transparency of inner rectangle, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to
100 (full solid)

min. height: the minimum height of the inner rectangle, used if the text is smaller than that

max. height: the maximum height of the inner rectangle, used if the text is longer than that

112

Example:

HTMLFONT = alpha, Arial, 32, , #000000
HTMLBORDER = alpha, DOTTED, #FF0000, 0.1
HTMLTEXT = 1, "this is a test", 0, 0, 100%, 100%, #FFFFFF, O, EB, 100, alpha

HTMLFILE

This directive prints the HTML text loaded from a filename in the cards specified by a range.
Syntax:

HTMLFILE = “range”, “html file”, pos x, pos y, width, height, html color, angle, flags, alpha
Parameters:

“range”: a set of cards

“html file”: the HTML filename for text to be printed (eventually with a pathname)

pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the text’s rectangle (in cm)

height: height of the text’s rectangle (in cm)

html color: background color for text

angle: angle of text rotation, you must specify 0 for no rotation

flags: you can specify one or more flags, chosen between:

Transparent background for text

Horizontal mirror

Vertical mirror

HTML rendering with internal engine

HTML rendering with internal engine (new)

HTML rendering with Explorer

Render a x2 image (do not use if you already have an OVERSAMPLE directive)
Render a x4 image (do not use if you already have an OVERSAMPLE directive)
Render a x8 image (do not use if you already have an OVERSAMPLE directive)
Vertical text

Transparent background, better rendering of png, works only with E flag (MS Explorer)
Wait 100 msec

Replace tags also between < and >

Clear page after rendering (MS Explorer)
Use always a new instance (MS Explorer)

ZOOSWOHOANM»> = T

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is
set to 100 (full solid). You can also specify an angle for the transparency, with the format
level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent)

Example:

HTMLFILE = 1, "c:\test.html", 0, 0, 6, 9, #FFFFFF, 0, T Figure 31
Result: Figure 31

113

HTMLFONT

This directive creates a tag that can be used for recalling a font in an HTMLTEXT directive (see page 118), for
example, if the tag is name, the string “one <name>two</name> three” has the word “two” written with the font
defined by it; tags can be nested, therefore if you want the other words to be written with other font, you can use the
string “<other>one <name>two</name> three</other>". If you create a tag with name example, in HTMLTEXT you
can also assign these characteristics in an HTML text using example as the 11™ parameter. If an alignment is specified,
the program creates a “paragraph” font (a <div> tag in HTML) therefore its text is organized in a new paragraph (with a
newline added when it’s closed), otherwise the program creates a “text” font (a tag in HTML). In other words,
if you want to use different font on the same line, it is possible only by omitting the alignment parameter. Note that for
default the text in HTMLTEXT is word-wrapped, so there is not a flag to enable it. There are three special tags: th, tr,
and td, that are used with the HTML tags of the same names (i.e., in tables).

Syntax:

HTMLFONT = tag, “font name”, font size, style, html color, alignment, shadow X, shadow y, shadow blur, shadow
color, outline color, outline width, indent, highlight color, char. spacing, angle

Parameters:

tag: a name used for referencing the font

“font name”: character font name (string)

font size: character font size, in typographical points (1 point = 1/72 of an inch)
style: character font style and flag used for visualization; values accepted are:

bold

italic

underline

strikeout

shadow over outline (the default is outline over shadow)

do not resize this font when using F flag in HTMLTEXT (see page 118)
the outline of the font is done in a more refined way

break lines at every character

the HTML syntax is formatted for table cells

small cap

multiple shadows (use sequences for parameters from 7t to 10™)

keep decimals in the font size calculation

round down to integers the font size calculation

last line aligned to the right

last line aligned to the center

last line justified

automatic hyphenation (you must specify the language with an HTMLLANG directive, see page 117)
manual hyphenation (you must specify the syllables of a word using one or more ­ tag)
forces the text on a single line

the text is converted to upper case

the text is converted to lower case

the first letter of the text is converted to upper case, the others to lower

M<KSENKICMErUZP>—A0TZONC—m

html color: character color, in the same format used for HTML
alignment: the text’s horizontal alignment, values accepted are:
left left aligned

center centered

right right aligned

justify the text is justified

The horizontal alignment is optional, if omitted is equal to left

114

shadow X: the horizontal offset for a shadow drawn under the text. Note: all the shadow’s parameters work only with
flag E, and Internet Explorer must be version 11 or more

shadow y: the vertical offset for a shadow drawn under the text

shadow blur: if you specify this parameter, the shadow is blurred

shadow color: the color for the text’ shadow, in the same format used for HTML
outline color: the color for the text’s outline, in the same format used for HTML

outline width: the width for the text’s outline

indent: the indentation in cm of the first line (you can specify a negative number for hanging o test
indentation)

highlight color: color for the background of the text, in the same format used for HTML

char. spacing: the spacing used between each character, it can be negative

angle: the angle of the rotation for the characters Figure 32

Example:

HTMLFONT = alpha, Arial, 32, , #000000

HTMLFONT = beta, "Times New Roman", 18, I, #0000FF
HTMLKEY = 1 (test), test, alpha

4
HTMLTEXT = 1, "This is a (test)", 0, 0, 100%, 100%, #FFFFFF, 0, E, 100, beta
Result: Figure 32

HTMLFONTSTEP
The F flag in the HTMLTEXT directive (see page 118) works by reducing the size of the font by steps of one until the

text fits in the rectangle area. This directive changes the value of the step. Note that you should not choose a value too
small, because if nanDECK does not see a variation in the size of the text (i.e., the variation is small than one pixel), it
stops this process.

Syntax:

HTMLFONTSTEP = “range”, font size step, width min, adjust multi

“range”: a set of cards

font size step: the value of the step

width min: the minimum threshold for considering when lines have the same length (for G flag in HTMLTEXT), the
default is zero

adjust multi: the starting decrement in font size (for F flag in HTMLTEXT), the default is 8

HTMLIMAGE

To simplify insertion of images in HTMLTEXT directives (see page 118), you can specify a name with this directive,
associated with a filename, width, and height. When an HTMLTEXT is rendered, the name is substituted with an
HTML tag for the image, with the correct size.

Syntax:

HTMLIMAGE = “range”, key, “image file”, width, height, flags, angle, margin top, margin left, margin right, margin
bottom

“range”: a set of cards

115

key: the name associated to the image (replaced in HTML)
“image file”: the filename for the image

width: width of the image (in cm)

height: height of the image (in cm)

flags: you can specify one or more flags, chosen between:

proportional

image alignment to the top of text (only with Explorer)

image alignment to the middle of text (only with Explorer)

image alignment to the bottom of text (only with Explorer)

image alignment to the left of the rectangle, text flushing right (only with Explorer)

image alignment to the right of the rectangle, text flushing left (only with Explorer)

image alignment to the left (under other images with L flag), text flushing right (only with Explorer)
image alignment to the right (under other images with R flag), text flushing left (only with Explorer)
the replacement of the key with the image is made in a case-sensitive way

this image is not resized when a F flag is used in the HTMLTEXT directive

this image does not cause the line spacing between lines of text to increase

TOO—MIUrw=z <0

angle: the angle of the rotation for the image

margin top: the size of the top margin, in cm (the default is no margin)
margin left: the size of the left margin, in cm (the default is no margin)
margin right: the size of the right margin, in cm (the default is no margin)
margin bottom: the size of the bottom margin, in cm (the default is no margin)
Example:

HTMLIMAGE = 1, " (one)", "image.bmp", 1, 1, P
HTMLTEXT = 1, "Test (one)", 0, 0, 6, 9, #FFFFFF, 0, T

HTMLKEY

With this directive, you can create words that are replaced by longer texts in HTMLTEXT directive (see page 118).
Syntax:

HTMLKEY = “range”, “key”, “text”, htmlfont, flags

“range”: a set of cards

“key”: a string that is searched and replaced with text parameter

“text”: a string that replaces the key parameter

htmlfont: add start and end tags for a font defined by an HTMLFONT directive (see page 114)

flags: you can specify one or more of these flags:

C the replacement of the key with the text is made in a case-sensitive way
R the key searched can be specified using a regular expression

Z forces the text on a single line

Example:

116

HTMLFONT = fnt0O, Arial, 10, , #000000

HTMLFONT fntl, Arial, 16, , #000000

HTMLFONT = fnt2, Arial, 16, B, #FF0000

HTMLKEY = 1, (test), "only (one) word", fntl

HTMLKEY = 1, (one), "one", fnt2

HTMLTEXT = 1, "Test (test)", 0, 0, 6, 9, #FFFFFF, 0, E, 100, fntO

HTMLLANG

With this directive, you specify the language that is used for the automatic hyphenation, when the H flag is used in
HTMLFONT (see page 114).

Syntax:

HTMLLANG = language

language: a string that define the language used (en, fr, de, it, etc.)
Example:

HTMLLANG = it

HTMLMARGINS

This directive adds the settings for margins and vertical alignment to an existing tag (that was created with
HTMLFONT directive, see page 114) to be used in HTMLTEXT directive (see page 118); this directive works only
with E flag in HTMLTEXT (MS Explorer).

Syntax:

HTMLMARGINS = “html tag”, margin top, margin left, margin right, margin bottom, paragraph alignment, line
spacing, cell width, cell height, stretch

Parameters:

“html tag”: a name used for referencing the font
margin top: the size of the top margin, in cm
margin left: the size of the left margin, in cm
margin right: the size of the right margin, in cm
margin bottom: the size of the bottom margin, in cm

paragraph alignment: the text’s vertical alignment, values accepted are:

top top aligned
center centered
bottom bottom aligned

line spacing: the text’s line spacing in %, the default is 100 is for a single line

cell width: the width of a table cell, in cm (it works only when T flag is used in HTMLFONT)

cell height: the height of a table cell, in cm (it works only when T flag is used in HTMLFONT)
stretch: the font is stretched (if the value is less than 100) or enlarged (if the value is more than 100)
Example:

HTMLFONT = alpha, Arial, 32, , #000000

117

HTMLMARGINS = alpha, 0.5, 1, 1
HTMLTEXT = 1, "This is a test", 0, 0, 100%, 100%, #FFFFFF, O, EB, 100, alpha

Note: using 100 as line spacing gives a different result from leaving that parameter empty, it is a behavior of HTML.

HTMLTEXT

This directive prints a text, using HTML format, in the cards specified by a range. This directive is useful if you want to
print a text with multiple size, font, attributes, colors and so on. For expressions, you must include them in double curly
parentheses {{ ... }}. You can add also one or more images, using a keyword(s), coded with the HTMLIMAGE
directive (see page 115).

Syntax:

HTMLTEXT = “range”, “text”, pos X, pos y, width, height, html color, angle, flags, alpha, htmlfont1, htmlfont2
Parameters:

“range”: a set of cards

“text”: the HTML text to be printed

pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the text’s rectangle (in cm)

height: height of the text’s rectangle (in cm)

html color: background color for text

angle: angle of text rotation, you must specify 0 for no rotation
flags: you can specify one or more flags, chosen between:

Transparent background for text

Horizontal mirror

Vertical mirror

HTML rendering with internal engine

HTML rendering with internal engine (new)

HTML rendering with MS Explorer

Render a x2 image (do not use if you already have an OVERSAMPLE directive)
Render a x4 image (do not use if you already have an OVERSAMPLE directive)
Render a x8 image (do not use if you already have an OVERSAMPLE directive)
Vertical text

Transparent background, better rendering of png, works only with E flag

The text is reduced to fit the rectangle, works only with E flag

The text is reduced to fit the rectangle and the size is saved for the next cards, works only with E flag
The text is enlarged to fit the rectangle, works only with E flag

The width is reduced to set the lines with the same length

The images are resized with the text, works only with EF flags

TEXTLIMIT variables are calculated more accurately, works only with E flag

Replace tags also between < and >

The fonts in 121" parameter are applied sequentially

Clear page after rendering, works only with E flag

Use always a new instance, works only with E flag

Keep the HTML file on disk, for debugging, works only with E flag

Instead of a temporary file on disk, use RAM, works only with E flag

Instead of a temporary file on disk, use RAM (alternate method), works only with E flag
Instead of a temporary file on disk, use RAM (alternate method), works only with E flag

OXN<LK<ZOCOrZzo«cunmnmwxumoeoe~NdmM»> — I I -

118

alpha: level of transparency of text, from O (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full
solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of
transparency is the starting level, ending with O (full transparent)

htmlfontl: add to the whole text the start and end tags for a font defined by an HTMLFONT directive (see page 114)
htmlfont2: add to each paragraph the start and end tags for a font defined by an HTMLFONT directive (see page 114)
Example:

[HTML] = " (text) example
(image) example
(earth)"
HTMLFONT = fnt, Arial, 10, , #000000

HTMLFONT = fntb, Arial, 10, B, #000000

HTMLKEY = 1, (text), "Text", fntb

HTMLKEY = 1, (image), "Image", fntb

HTMLIMAGE = 1, (earth), earth.jpg, 6, 6

HTMLTEXT = 1, [HTML], O, O, 6, 9, #FFFFFF, 0, E, 100, fnt
Result: Figure 33

ICON

This directive assigns one or more characters (a “key”) to an image, to be used later with an ICONS directive (see page
119).

Figure 33

Syntax:

ICON = “range”, key, “image file”, width factor, height factor

Parameters:

“range”: a set of cards

key: one or more characters used to identify the image (like “A” or “001”)

“image file”: an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif

width factor: the width of the image is adjusted with this factor, a value larger than 100 enlarge the width of the image,
a value less than 100 shrink the width of the image (if not specified, the width factor of the image is 100)

height factor: the height of the image is adjusted with this factor, a value larger than 100 enlarge the height of the
image, a value less than 100 shrink the height of the image (if not specified, the height factor of the image is 100)

Example:

ICON = "1-10", A, "c:\images\imagel.jpg"
ICON = "1-10", B, "c:\images\image2.jpg"
ICON = "1-10", C, "c:\images\image3.jpg"
ICONS

This directive prints a number of images in a rectangular area, like a multi-image PATTERN directive (see page 149),
the “keys” parameter identifies the images used, defined before with some ICON directives (see page 119). For
example, if you write:

ICON = "1-10", A, "c:\images\imagel.jpg"
ICON = "1-10", B, "c:\images\image2.jpg"
ICON = "1-10", C, "c:\images\image3.jpg"

You can use a key of “ABC” in an ICONS line to print the three images all together in a rectangular area. This directive
is useful when you must convert to images an output from the combination/permutation engine. You can also use these
special characters:

119

< adds a backspace and draw two images in the same place; for example, a key like “P<2” means that the image
assigned to “2” is printed over the image assigned to “P”

> adds a newline; for example, a key like “A>BB” draws first the image “A”, and two images “B” in a new line, i.e.,

the three images are arranged in a triangle pattern

the image corresponding to the next key is shown in the current icon space, merged with the next. For example, _A

means that image A is shown in the merged space of two icons; __A means that image A is shown in the merged

space of three icons

Note: if you have a key longer than one character, these special characters must be replicated as well (i.e., with a key
length of two, the special characters become “<<”, “>>7 *“ 7

Syntax:

ICONS = “range”, keys, pos x, pos y, width, height, obj width, obj height, angle, flags, horizontal alignment, vertical
alignment, alpha, key length, width factor, height factor

Parameters:

“range”: a set of cards

keys: a string, composed by characters assigned to images with ICON directives

pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the rectangle in which the images are printed (in cm)

height: height of the rectangle in which the images are printed (in cm)

obj width: width of the single image to be printed (in cm)

obj height: height of the single image to be printed (in cm)

angle: angle of image rotation, if not specified it is assumed to be 0 (for no rotation)
flags: in this parameter, you can specify a special behavior for images, possible values are:
Transparent

Anti-aliasing

Reverse, reversing the filling order of pattern’s elements (from bottom to top)
Use PNG transparency

Proportional

Vertical pattern

Distribute icons in width
Distribute icons in height

IS<TzZzo>-H

horizontal alignment: the images’ horizontal alignment in the rectangle, values accepted are:

LEFT left aligned
CENTER centered (the default)
RIGHT right aligned

vertical alignment: the images’ vertical alignment in the rectangle, values accepted are:

TOP top aligned
CENTER centered (the default)
BOTTOM bottom aligned

120

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full
solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of
transparency is the starting level, ending with 0 (full transparent)

key length: the default length of the character string utilized for key is one character, but a
different length can be specified here, the "keys" parameter length must be a multiple

width factor: the width of the space for an image is adjusted with this factor, a value larger than 100 enlarge the width
of the space, a value less than 100 shrink the width of the space (if not specified, the width factor of the space is 100)

height factor: the height of the space for an image is adjusted with this factor, a value larger than 100 enlarge the height
of the space, a value less than 100 shrink the height of the space (if not specified, the height factor of the space is 100)

Example:

RECTANGLE = 1, 0, 0, 6, 6, #0000FF
ICON = 1, A, "c:\images\dot red.gif"
ICON = 1, B, "c:\images\dot blue.gif"
ICON = 1, C, "c:\images\dot black.gif"

14
ICONS = 1, BAC, O, O, 6, 6, 2, 2, 0, T, CENTER, CENTER
Result: Figure 34

”: Figure 34

The IF...ENDIF structure can be used to create sections of code that must be executed only if are verified some
conditions.

Syntax:

IF = valuel operator value2

ELSEIF = value3 operator value4

ELSEIF = value5 operator value6

ELSE

ENDIF

Parameters:

value: a string, number, label, or expression that can be evaluated

operator: the condition is evaluated using the two values and this operator, you can use one operator from this list:

valuel and value2 are equal

> valuel is major than value2

< valuel is minor than value2

>= valuel is major or equal than value2
<= valuel is minor or equal than value?
<> valuel and value 2 are different

@ valuel is contained into value2

valuel is not contained into value2

More than one test can be combined using Boolean logic, every test must be enclosed in parenthesis, and these are the
accepted keywords:

TRUE
_FALSE__
NOT

AND

121

OR

If in an expression there are more than one logic operator, they are evaluated with these priorities (if they have the same
priorities, they are evaluated from left to right):

1) NOT_
2) _AND
3) OR_
Examples:

; choose a value between R, E and T
[check] = R
IF = [check] = R

RECTANGLE = 1, 0, 0, 6, 9, #0000FF
ELSEIF = [check] = E

ELLIPSE = 1, 0, 0, 6, 9, #00FFO0O
ELSEIF = [check] =T

TRIANGLE = 1, 3, 0, 6, 9, 0, 9, #FF000O0
ELSE

RECTANGLE = 1, 0, 0, 6, 9, #000000
ENDIF

; complex logic
if=([a]=1) AND_ NOT_ ([b]=3)

; in this example, the AND operator is evaluated first
if=([a]l=1) OR_([b]=1) AND ([c]=1)

; in this example, the OR_operator is evaluated first
if=((lal=1) _OR_ ([bl=1)) _AND ([c]=1)

Note: if you want to use a sequence as argument for the IF directive, you must extract an element using the ? operator
(and § for the number of the current card) inside an expression (with curly brackets). For example:

IF = {sequence?§} = element

IMAGE

This directive can be used to add an external image to a range of cards.
Syntax:

IMAGE = range, image file, pos X, pos y, width, height, angle, flag, alpha, texture width, texture height, skew x, skew y,
img width, img height, loc x, loc y, copy x, copy y

Parameters:

range: a set of cards (the standard rules about ranges will be applied)

image file: an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif
pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the image (in cm)

height: height of the image (in cm)

angle: angle of image rotation, can be O for no rotation

122

Figure 35

These are the required parameters. This directive can be used for a background on all your cards, or a logo on top-right,
or a centered image. Simply specify range, image, position, and angle. For example:

IMAGE = 1, "c:\images\earth.]jpg", 0, 0, 6, 9, 0
Result: Figure 35

Note that the image will fill the destination rectangle, the standard behavior of this command is
resizing the original image and altering the aspect ratio for width and height. If you want to m