nanDECK Manual

by Andrea "Nand" Nini

Program version 1.27.3-2023-11-07
https://www.nandeck.com
An overview 7
Editor commands 11
Getting started 13
Ranges 17
Colors 19
Labels and sequences 23
Label functions 29
AUTOLABEL 29
AUTORANGE 29
CALC. 29
CASESTRING. 30
COLRGB 30
CONCAT 30
CONCAT1 30
COOFRAME 30
COOFRAMES 31
COOICON 31
DIRFILES 32
ENVIRONMENT 32
EVAL 32
EXPAND 33
FILTER 33
GRADIENTSEQ 35
GROUP 35
IMAGECREATE 35
INDEX 36
INFO 36
JOIN 36
JOINIF 36
LABELRANGE 37
LABELSTRING 37
LABELSUB 38
LENGTH 38
LOOKUP 38
MEASURE 39
PDFMERGE 39
PDFPAGES 39
PRODUCT 39
RANGEADD 39
RANGECOUNT 40
RANGEINS 40
RANGEINT 40
RANGELABEL 40
RANGEMERGE 41
RANGEMUL 41
RANGEREM 41
RANGESUB 42
REPEAT 42
REPLACE 42
ROUND 42
SAVELABEL 42
SCHEMA 43
STRINGLABEL 43
STRINGSUB 43
TAGFRAME 43
TOKENIZE 43
TOKENIZESEQ 44
TRANSLATE 44
TRIMSTRING 44
Frames 45
Frame functions 49
FRAMEBAR 49
FRAMEBEZIER 49
FRAMEBOX 49
FRAMECLOCK 50
FRAMECOUNT 51
FRAMEDISK 51
FRAMEHEX 51
FRAMEIMAGE 52
FRAMELINE 52
FRAMELIST 53
FRAMEMAZE 53
FRAMEMELD 54
FRAMEMOSAIC 54
FRAMENET 54
FRAMEPATH 55
FRAMEPER 56
FRAMERECT 56
FRAMESUB 56
FRAMETRANS 56
FRAMETRI 57
Expressions 58
Comments 60
Script lists 61
Create PDF 62
Save images 63
Convert a PDF to images 64
Command-line parameters 65
Keyword wizard 66
Linked data editor 68
Virtual table 69
Visual editor 72
Configuration 74
Compare decks 79
Shortcuts 80
F.A.Q. 81
Directives 83
BACKGROUND 83
BASERANGE 83
BATCH 84
BEZIER 84
BEZIERS 85
BLEED 86
BOOKMARK 86
BORDER 87
BRUSH 88
BUTTON 88
CANVAS 89
CANVASSIZE 90
CANVASWORK 90
CARDS 90
CARDSIZE 91
CASE 91
CASEELSE 91
CHROMAKEY 91
CIRCLE 92
CMYK 92
COLOR 93
COLORCHANGE 93
COLORS 94
COMMENT 95
COMPARE 95
COPY 95
COPYCARD 96
CORRECTION 97
COUNTER 97
DECK 98
DEPTH 98
DICE 99
DISPLAY 100
DOWNLOAD 101
DPI 101
DRAW 101
DUPLEX 102
EDGE 102
ELLIPSE 103
ELSE 104
ELSEIF 104
END 104
ENDFRAME 105
ENDIF 105
ENDIMAGEENC 105
ENDLAYER 105
ENDLINK 105
ENDSECTION 106
ENDSELECT 106
ENDSEQUENCE 106
ENDVISUAL 106
EXPRESSION 107
FACTORS 107
FILL 107
FLAGS 108
FOLD 108
FOLDER 109
FONT 109
FONTALIAS 110
FONTCHANGE 111
FONTRANGE 111
FOOTER 112
FOR 113
FRAME 113
GAP 114
GRADIENTS 114
GRID 115
HEADER 116
HEXGRID 116
HTMLBORDER 117
HTMLFILE 118
HTMLFONT 119
HTMLFONTSTEP 120
HTMLIMAGE 121
HTMLKEY 122
HTMLLANG 122
HTMLMARGINS 123
HTMLTEXT 123
ICON 125
ICONS 125
IF. 127
IMAGE 128
IMAGEENC 130
IMAGEFILTER 131
IMAGELIMIT 131
IMAGESIZE 132
INCLUDE 132
INPUTCHOICE 133
INPUTLIST 133
INPUTNUMBER 134
INPUTTEXT 135
LABELMERGE 136
LAYER 136
LAYERDRAW 137
LIMIT 137
LINE 138
LINERECT 139
LINK 140
LINKADO 141
LINKAUTO 142
LINKCACHE 142
LINKCOLOR 142
LINKENCCSV 142
LINKENCODE 143
LINKEXEC 143
LINKFILL 143
LINKFILTER 143
LINKFONT 144
LINKMULCOPY 144
LINKMULDIS 145
LINKMULTI 145
LINKNEW 146
LINKRANDOM 146
LINKSEP 147
LINKSPLIT 147
LINKSTYLES 147
LINKTAB 147
LINKTRIM 147
LINKUNI 148
LOADPDF 148
LOG 149
MACRO 149
MANDALA 150
MARGINS 150
MERGEPDF 151
MOSAIC 151
NANDECK 152
NEXT 152
ORIGIN 153
OVERSAMPLE 153
PAGE 153
PAGEFONT 154
PAGEIMAGE 155
PAGESHAPE 155
PATTERN 156
PIE 157
PNGCOMP 158
POLY 158
POLYGON 158
PRINT 159
QRCODE 160
RANGE 160
RECTANGLE 161
RENDER 161
RHOMBUS 161
ROUNDRECT 162
RTFFILE 163
RTFTEXT 164
SAVE 164
SAVEGIFA 165
SAVEPAGES 166
SAVEPDF 166
SECTION 167
SELECT. 167
SEQUENCE 168
SET 169
SPECIAL 169
STAR 170
STORE 170
SYMBOL 171
TABLE 172
TAG 172
TAGS 173
TEXT 173
TEXTFONT 175
TEXTLIMIT 176
THREADS 176
TOKEN 177
TRACK 177
TRACKRECT 178
TRANSFORM 179
TRIANGLE 180
UNIT 180
VECTOR 181
VISUAL 181
VORONOI 182
ZOOM 182
Code examples 184
Wargame counters 184
Dice results 185
Score track 186
Boggle dice 187
Catan map 188
Clock 189
Hex board 190
Triangle map 191
Chess board 192
Trivia cards 193
Hex racetrack 194
Tuckbox 195
Number wheel 196
Tripples tiles 197
Path tiles 198
Combinations 199
Standard 52-deck of cards 200
Hexagonal tiles 201
Double-sided printing 202

An overview

nanDECK is a program capable of creating graphic elements from scripts: every line of a script contains a command, for rendering texts, rectangles, and other graphic elements. The program was made for creating cards, but it can be used for many other graphic objects; each card is treated like a different page, in which you can draw different graphical elements. At the start, you can write the script in the large edit box in the center of the window:

You can load a script with the "Open deck" button, save it with "Save" and "as" buttons, and create the deck with the buttons "Validate deck" and "Build deck".

Tip: You can do both if you right-click the "Validate deck" button.

All commands start with a keyword, an equal sign $(=)$ and a list of parameters; for many commands, the $1^{\text {st }}$ parameter is a range of "cards" in which the command will be executed. The commands without a range will be evaluated only once (for example the BORDER directive to draw a border on all cards, or the CARDS directive for setting the number of the cards in the deck), or for every card (like the FONT directive); in other words, the program creates the $1^{\text {st }}$ card in the deck, and executes all the script on it, then it switches on the $2^{\text {nd }}$ card, and executes all the script and so on; each ranged directive is executed only if the range match.

Note: the CARDS directive is no longer needed, now the program creates automatically a deck using the information from all the directives in the script. For example, if you have a 10-30 range, the deck will be created with 30 cards.

For example, in a game of Werewolf, I need a card with a word "SEER", three "WEREWOLF" and thirteen "VILLAGER". The first card will be:

```
FONT = Arial, 32, B, #0000FF
TEXT = 1,"SEER", 0, 0, 100%, 100%, center, center
```

With the $1^{\text {st }}$ line, I choose a font: Arial 32, bold, and blue (the \#0000FF parameter); with the $2^{\text {nd }}$ line I draw the word "SEER" in the center of the whole card \#1 (starting from 0,0 - top left of the card, 100% width and 100% height). The other cards will be drawn with these lines:

```
FONT = Arial, 24, B, #FFO000
TEXT = 2-4, "WEREWOLF", 0, 0, 100%, 100%, center, center
```

```
FONT = Arial, 28, B, #000000
TEXT = 5-18, "VILLAGER", 0, 0, 100%, 100%, center, center
```

Note the range 2-4 and 5-18, for three and thirteen cards. Other elements can be added, for example a rectangle:
RECTANGLE $=1-18,0,0,100 \%, 100 \%$ \#FFFFFF\#000000\#FFFFFF@90, empty, 1

The rectangle is on all the cards (range 1-18), from 0,0 - top left, 100% width and 100% height, with a gradient starting from white (\#FFFFFF), to black (\#000000), again to white, rotated 90°; not filled (empty parameter) and with a border thickness of 1 ".

The flexibility of the program is that an element can be added on one or more than one card, changing only the range parameter. If you want to add an image on all the cards, you can add a line like this:

IMAGE = 1-18, "Logo.png", 0, 0, 20\%, 20\%, 0, TP
In the left bar in the main window, you can use these command buttons:
New deck: creates a new, empty script.

Note: if there is a file named "newScriptTemplate.txt" in the same folder with the executable, this file is automatically loaded when you press the "New deck" button.
wiz: creates a new script, by selecting some starting options.
Open deck: open a saved script.
all: open all the scripts (files with extension .txt and .nde) in a folder.
Reopen deck >: open a saved script, choosing one from a list of the last accessed scripts.
Library: shows you a list of examples (downloaded from Internet).
Save: save the current script.
as: save the current script with another name.
Exit program: close the program.
Validate deck: the program checks the syntax of the script.
Build deck: the program builds the deck of cards.
Print deck: the program prints the deck of cards.
Save images: the program saves the images of each card of the deck, see page 63.
MT: the program can launch several instances of itself, each with a range from the current deck.
PDF: the program creates a PDF file with all the cards' images, see page 62.
CP: the program creates one image from each page of a PDF, see page 64.
GIFa: with this option, you can save the current deck into an animated GIF image (you can choose the delay between images and select an optimized palette).

TIFF: with this option, you can save a multi-page TIFF image (with RGB or CMYK color space).
Print script: prints the current script.

Insert >: this button opens a menu, where you can insert a color, a font, an image, a symbol, a gradient, an include file, a linked file, a label, a frame, a folder, creates an automatic layout (b / n, color, n / b, and the same options randomized), converts all the TEXT directives into HTMLTEXT, encodes an image file into the current script, or add codes to use the icon from Game-icons.net font.

Linked data: you can edit the data from a linked csv file, see page 68.
Find: find a string in the script editor.
rpl: find and replace a string in the script editor.
Add (CTRL+R): the program adds a comment in the current line / selected block of the script; if pressed with CTRL, the comment is added to all the lines in the script with the same directive in the current line.

Com (CTRL+E): the program toggles a comment in the current line / selected block of the script.
Rem (CTRL+U): the program removes a comment in the current line / selected block of the script; if pressed with CTRL, the comment is removed from all the lines in the script with the same directive in the current line.

Indent.: automatically apply indentations to the current script.
No ind.: remove all indentations from the current script.
Help (F1): the program shows a help page for the current directive.
(F2): the program shows a window for modifying the current directive.
Config: the configuration options, see page 74.
Info: info about the author.

In the right bar, you find a preview of the current card and if you hover the pointer on a feature, a hint box shows you the corresponding line(s) in the script; a CTRL click moves the caret to the corresponding line. In this bar you can use these command buttons:

Link first: if you check this option, only the first line from a data file (csv or spreadsheet) is read, for testing purpose.
Link dis.: if you check this option, the data file (csv or spreadsheet) is not read, and are shown only the fields' names, for testing purpose.

Highlight (checkbox): check this option to highlight with colors each line of the editor and each graphic element of the preview.

Go to card: click to select a card from the deck to be viewed.
Highlight (button): click to highlight the graphic element of the preview corresponding to the current line of the editor.
Preview: remove the check in this option if you want to hide the card preview (the rendering is faster).
Auto build: check this option if you want to see in real time the script's changes in the preview.

Partial: the program renders the current card only until the position of the cursor in the editor
Arrow buttons: with these buttons, you move between the cards of the deck (first, prior, next, and last), with a leftclick you can go to the next different card.

Card preview: this button shows you an enlarged view of the current card
Canv: this button shows you the canvas (the card number zero).

Visual Editor: the program opens the visual editor window, see page 72

Comp: this button shows a window for comparing different decks of cards.
Script list: in this window, you can execute several scripts, in a batch mode, see page 61.
Edit: in this window, you can edit the content of a linked spreadsheet file.
Table: the program opens the virtual table window, see page 69 .
TTS: with this option you can load duplicates of card, tiles and tokens in Tabletop Simulator save file.
The Game Crafter: in this window, you can upload a deck of card directly to the website http://www.thegamecrafter.com for printing and/or publishing your game.

Sim: this option allows you to run a Monte Carlo simulation on the drawing of a hand of cards or a roll of dice.
All deck: this button selects all the cards in the deck to be rendered (the start-end range is in the two edit boxes to the left and right of this button).

Copy script: to copy the script (or the selected part) in the clipboard, to be pasted elsewhere.
Copy to...: to copy the script (or the selected part) in the clipboard, to be pasted with the code formatting, in BoardGameGeek, Reddit, BoardGameDesignForum, or Discord.

If you click on the file name in the status bar (the bottom line of the screen), an Explorer window opens showing the folder where the current file is located.

Editor commands

CTRL+X	Cut
CTRL+C	Copy
CTRL+V	Paste
CTRL+A	Select all
CTRL+B	Validate and build the current card
CTRL+I	Insert card's number (character §)
CTRL+O	Insert frame's number (character ${ }^{\circ}$)
CTRL+P	Insert frame's number (character $\boldsymbol{\mu}$)
CTRL+R	Comment current line/selected text
CTRL+U	Remove comment from current line/selected text
CTRL+E	Toggle comment on/off in current line/selected text
SHIFT+CTRL+I	Block indent
SHIFT+CTRL+U	Block un-indent
SHIFT+ALT+UP	Move block up one line
SHIFT+ALT+DOWN	Move block down one line
CTRL+D	Add new tab with a new version
SHIFT + CTRL + D	Duplicate current line/block
CTRL+M	Line break
CTRL+N	Add new tab (empty)
CTRL+T	Show windows side by side
CTRL+Y	Delete current line/block
SHIFT+CTRL+Y	Delete EOL
CTRL+Z	Undo
SHIFT+CTRL+Z	Redo
CTRL+RIGHT ARROW	Go to next word in the editor
CTRL+LEFT ARROW	Go to previous word in the editor
CTRL+TAB	Select next word in the editor
CTRL+SHIFT+TAB	Select previous word in the editor
SHIFT+F1	Select next tab in the editor
SHIFT+F2	Select previous tab in the editor
CTRL+0... 9	Go to marker 0...9
SHIFT+CTRL+0... 9	Set/remove marker 0...9
SHIFT+CTRL+C	Set columns selection
SHIFT+CTRL+L	Set lines selection
SHIFT+CTRL+N	Set standard selection
SHIFT+CTRL+B	Match bracket
CTRL+F	Find
CTRL+H	Replace
CTRL+G	Go to line
CTRL+SPACE	Insert label
F1	Help (current line directive)
CTRL+F1	Auto layout (white on black)
F2	Modify (current line directive)
CTRL+F2	Auto layout (color)
F3	Modify (current line directive, visual mode)
CTRL+F3	Auto layout (black on white)
SHIFT+F3	Convert selected text to upper/lower case
F4	Visual editor
CTRL+F4	Close current tab
F5	Auto build switch
CTRL+F5	Insert character for Game-Icons.net font
F6	Go to card
F7	Highlight current line
CTRL+F7	Highlight all lines switch
F8	Insert label
CTRL+F8	Insert frame
F9	Insert color
CTRL+F9	Insert gradient

Tip: You can copy the current card's image if you click on the card image.

Tip: You can validate and build the current card's image if you right-click on the card image. If you press CTRL, after the build the cursor in the text editor is moved to the next line (useful with "Partial" option enabled).

Tip: You can erase the current preview (and free the RAM) if you wheel-click on the card image.

Tip: You can validate and build the whole deck if you right-click on the "Validate deck" button.

Tip: You can validate, build and print the whole deck if you right-click on the "Build deck" button.
Tip: You can edit more than one script simultaneously, right click on the tab on the upper side of the screen and choose the voice "Add new tab" to add another tab to the editor.

Tip: You can move between cards using the mouse wheel.

Getting started...

This is a simple yet complete tutorial about how to create a deck of cards starting from a spreadsheet file.
First, I wrote some data, and save them as Data.xlsx:

	A	B	C	D	E	F	G	
1	Name	Desc	Img	Icons	Value	Num		
2	Desert	A desert is a barren area of land where little precipitation occurs and consequently living conditions are hostile for plant and animal life.	desert.jpg	EF	8	1		
3	Lighthouse	A lighthouse is a tower, building, or other type of structure designed to emit light from a system of lamps and lenses and used as a navigational aid for maritime pilots at sea or on inland waterways.	lighthouse.jpg	EW	10	2		
4	Jellyfish	Jellyfish are typified as free-swimming marine animals consisting of a gelatinous umbrella-shaped bell and trailing tentacles.	jellyfish.jpg	AW	5	3		
5								
6								

Note: each column will be identified with the name in the first line (each must be different).
I start nanDECK, and as first line I link that file:

```
LINK = Data.xlsx
```

Then I save the script, as tut01.txt, in the same folder with the Excel file (if I want to save it in a different folder, in the LINK line I must also specify the path, for example $\mathrm{c}:$ \users\nand\desktop\data\data.xls).

I want to put the title in the top of the card, then I select a font with the line:

```
FONT = Arial, 24, , #000000
```

Font name for the $1^{\text {st }}$ parameter, size for the $2^{\text {nd }}$, and color for the $4^{\text {th }}$. The $3^{\text {rd }}$ is empty, this is the place for flags like \mathbf{B} (bold), I (italic), \mathbf{U} (underline) and so on (among others, if you want to shrink the font size to fit the space, use a \mathbf{N} flag, if you do not want to see the text background, use a \mathbf{T} flag). If you use more than one flag, put them all in this parameter (for example: BTN).

And add the title with this line:

```
TEXT = 1-3, [name], 0, 0, 100%, 20%
```

The $1^{\text {st }}$ parameter is the range, and I want to put this text on three cards (from 1 to 3 , then the syntax is $1-3$), the $2^{\text {nd }}$ parameter is the column name from the Excel file (enclosed in square brackets), the others are the position (0,0 is top left), width (100% of the card's width) and height (20% is a fifth of the card's height).

Note: I can use also values in cm , and I can specify $0,0,6,1.8$ (for a default card of $6 \times 9 \mathrm{~cm}$), but with percent values I can change the size of the card without having to change every size of every element.

With a click on "Validate deck" button, "Build deck" button, the deck is created with three (ugly) cards:

Desert	Lighthouse	Jellyfish

Let us add some images:

```
IMAGE = 1-3, [img], 0, 20%, 100%, 40%, 0, P
```

The 0 in the $7^{\text {th }}$ parameter is the angle of rotation for the image, and the \mathbf{P} is for proportionally resize the image, if you have transparent PNGs, add a \mathbf{N} flag in the same parameter (i.e., PN).

I have added the images' files in the same folder with the spreadsheet and the script, and this is the result after Validate

+ Build:

Desert	Lighthouse	Jellyfish

These lines are for the description:

```
FONT = Arial, 10, , #000000
TEXT = 1-3, [desc], 5%, 65%, 90%, 30%, left, wordwrap
```

I choose a smaller font, and since the description is more than one line, I add left as horizontal alignment and wordwrap as vertical. This is the result:

These lines are for the value column:

```
FONT = Arial, 32, T, #FFO000
TEXT = 1-3, [value], 0, 20%, 20%, 40%
```

To make the number readable on every background, I can add an outlined text:

```
FONT = Arial, 32, T, #FFFFFF
TEXT = 1-3, [value], 0, 20%, 20%, 40%, center, center, 0, 100, 0.1
```

The " $0,100,0.1$ " are respectively for angle, transparency, and outline width.
Note that these lines must be added before, because every element in a script is drawn accordingly to its position: first are drawn elements in the first lines, the last drawn are those in the bottom lines.

I have four icons (one for each element), each identified with a letter in my Excel file (and on each card, there may be more than one icon). I add these lines in the script:

```
ICON = 1-3, A, air.png
ICON = 1-3, E, earth.png
ICON = 1-3, F, fire.png
ICON = 1-3, W, water.png
ICONS = 1-3, [icons], 80%, 20%, 20%, 40%, 20%, 10%, 0, PN
```

In the last line, I specify the icons' area $(80 \%, 20 \%, 20 \%, 40 \%)$, the size of each icon $(20 \%, 10 \%)$, the angle of rotation (0) and to use proportional resize (\mathbf{P}) and PNG transparency (\mathbf{N}).

I have added the four .png files in the same folder. And this is the result:

Finally, I want to duplicate each card for the number specified in the "num" column, then I add, as first line (before the LINK), this directive:

LINKMULTI = num

I must also change every range 1-3 into 1-7. This is the result page:

This is a more compact version of the script, here the $1^{\text {st }}$ parameter (the range) is empty for most directives because I want to put the text/images on all the cards, and if I leave the $1^{\text {st }}$ parameter empty, nanDECK uses as a default 1-n, where \mathbf{n} is the number of lines in the Excel file.

```
LINKMULTI = num
LINK = Data.xlsx
FONT = Arial, 24, , #000000
TEXT = , [name], 0, 0, 100%, 20%
IMAGE = , [img], 0, 20%, 100%, 40%, 0, P
FONT = Arial, 10, , #000000
TEXT = , [desc], 5%, 65%, 90%, 30%, left, wordwrap
FONT = Arial, 32, T, #FFFFFF
TEXT = , [value], 0, 20%, 20%, 40%, center, center, 0, 100, 0.1
FONT = Arial, 32, T, #FFO000
TEXT = , [value], 0, 20%, 20%, 40%
ICON = , A, air.png
ICON = , E, earth.png
ICON = , F, fire.png
ICON = , W, water.png
ICONS =, [icons], 80%, 20%, 20%, 40%, 20%, 10%, 0, PN
```


Ranges

Many directives (like IMAGE or TEXT) have a parameter for specifying for which cards will be executed that directive. A card in a range may be specified directly with a number, a list of cards with a list of numbers separated by a comma "," and a range of cards with the first and last cards separated with a dash "-" or the first card and a number, separated with a number sign "\#".

Examples:

```
RECTANGLE = 1, 0, 0, 6, 9, #0000FF
RECTANGLE = "1,3,5,7", 0, 0, 6, 9, #0000FF
RECTANGLE = 1-10, 0, 0, 6, 9, #0000FF
RECTANGLE = 10#5, 0, 0, 6, 9, #0000FF
```

Note: in the $2^{\text {nd }}$ line the range must be enclosed in quote for the presence of commas, however, you can always enclose all ranges in quotes.

You can mix the two methods, and use a complex range, like:
RECTANGLE $=" 1-10,12,15,19-20,35 \# 3 ", 0,0,6,9, \# 0000 \mathrm{FF}$
A number in a range can be the result of an expression (see page 58) and must be enclosed between " $\{$ " and " $\}$. For example:

```
RECTANGLE = 1-{2*5}, 0, 0, 6, 9, #0000FF
```

Note that a best practice is to create a range (and therefore a label) linked with the number of elements in a sequence, as when read from a linked file. For example, if you have a column named "title" in a spreadsheet, you can create a label for a range with this line:

```
[all]=1-{(title)}
```

Note that, since each column in a spreadsheet has the same length, usually is needed only one of these definitions, and you can use the label [all] with all the directives.

Usually, the order does not matter (1-10 is equal to $10-1$) but for one command, COPYCARD, the order is important, because the source range is uses as specified, these two rows are different:

```
COPYCARD = 11-20, 1-10
COPYCARD = 11-20, 10-1
```

The $1^{\text {st }}$ row gives as result this sequence of cards:
1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10
The $2^{\text {nd }}$ row gives as result this sequence of cards:
$1,2,3,4,5,6,7,8,9,10,10,9,8,7,6,5,4,3,2,1$
There is a syntax that can be used to change that behavior, useful, for example, to invert sub-ranges of cards (for printing front-back). For example:

COPYCARD $=10-18,1-9 \$ a b c>c b a$
The first group of characters is the start pattern, the second group is the destination pattern, in this case reversed in groups of three cards. You can obtain the same result manually writing:

COPYCARD $=10-18$, "3-1,6-4,9-7"
Note that you are not limited at patterns of three letters, you can use all that you need (until the twenty-six letters). This syntax is useful also if you want to specify a "hollow" range, for example, if you want a rectangle only on even cards:

```
RECTANGLE = 1-10$ab>a, 1, 1, 4, 4, #FF0000
```

See also: Labels and sequences chapter (page 23), AUTORANGE label function (page 29), and BASERANGE directive (page 83) about the interaction between ranges and sequences.

Colors

In this program, the colors will be defined by a string of seven characters, starting with a number sign "\#" and six hexadecimal digits (using the HTML syntax), two for each component (red-green-blue), for example:

White	\#FFFFFF
Black	\#000000
Red	\#FF0000
Green	\#00FF00
Blue	\#0000FF
Cyan	\#00FFFF
Magenta	\#FF00FF
Yellow	\#FFFF00

Tip: if you use the wizard for a new deck (the "wiz" button, to the right of "New deck" button), you can check the "Include labels for HTML colors" to obtain a set of 140 label definition for many colors.

Tip: you can choose a color from a color picker, clicking on the button "Insert" and choosing the menu voice "Color".

From the color picker, you can select a color from the list, adjust the three components (red, green, and blue), saturation, brightness, or pick a color from the screen (shortcut CTRL+P).

If instead of a hexadecimal digit you specify a letter "H", you obtain a random value from 0 to 15 . For example, if you want a complete random color, with this syntax you can use \#HHHHHH, instead for a random hue of blue, you can use \#0000HH, and so on. The letter "L" stands for the last color used, then \#LLLLLL is the last color, instead \#0000LL is the last blue component used.

You can concatenate more than one color to obtain a gradient, followed by a "@" to specify the angle. If you use these special values for the angle, you obtain a special gradient:

360 Radial gradient
361 Elliptical gradients
362 Square gradient
363 Rhombus gradient
364 Conic gradient
401-500 Star gradient (the number of the points is equal to the angle minus 400)

These are some examples:

From black to white, horizontal \#FFFFFF\#000000@0
\#0000FF\#FF0000@90

From cyan to magenta, radial
\#FFOOFF\#00FFFF@360

From cyan to magenta, elliptical
\#FF00FF\#00FFFF@361

From teal to yellow, square \#FFFF00\#008080@362

From orange to purple, rhombus
\#400080\#FFA500@363
From red, to green, to blue, to red, conic

From red, to green, to blue, star (8 points)
\#FFOOOO\#OOFFOO\#OOOOFF\#FFO000@364
\#0000FF\#00FFOO\#FF0000@408

In conic and star gradients you can specify a $2^{\text {nd }} @$ angle, to rotate the conic or the star of that angle.
With the GRADIENTS directive (see page 114) you can specify a compression factor and an origin point (with P flag) for special gradients, and for conic gradients you can also specify a rotation and a scatter angle, and for star gradients you can also specify a rotation, a "pointy" factor, a twist (positive or negative) and a scatter angle.

If you omit the "@", the colors are randomized (and smoothed); specifying a " $\%$ " and a number, you set a threshold for the $2^{\text {nd }}$ color, for example:

Blue and red, randomized	\#0000FF\#FF0000
Blue and red, randomized 50%	\#0000FF\#FF0000\%50
Red and blue, randomized 50\%	\#FF0000\#0000FF\%50
Blue, green, and red, randomized	\#0000FF\#00FF00\#FF0000

Specifying a $\$$ and a number, the colors are smoothed that number of times (without specifying it, the color is smoothed only one time), for example:

Blue and red	$\# 0000 \mathrm{FF} \# F F 0000$
Blue and red, no smoothing	$\# 0000 \mathrm{FF} \# F F 0000 \$ 0$
Red and blue, two smoothing	$\# F F 0000 \# 0000 \mathrm{FF} \$ 2$

If you add a $\boldsymbol{\&}$ and a number in the color, the pattern is created with a Perlin Noise algorithm, with several iteration equal to the numeric parameter, for example:

Blue and red, eight iterations
\# $0000 \mathrm{FF} \# \mathrm{FF} 0000 \& 8$

Blue and red, six iterations
\# $0000 \mathrm{FF} \# \mathrm{FF} 0000 \& 6$

If you add a ç in the color, the random pattern is made of stripes (and you can use more ç to make the stripes longer), for example:

Blue and red, randomized
\#0000FF\#FF0000

Blue and red, striped
\#0000FF\#FFOOOOç

Blue and red, striped x 2
\#0000FF\#FFO000çç

Usually, the stripes are applied also at the color in edge of the object; if you do not want this effect, add a ! to the definition of the gradient.

Tip: you can choose a gradient from a visual form, clicking on the button "Insert" and choosing the menu voice "Gradient".

There are directives (HTMLFILE, HTMLTEXT, ICONS, IMAGE, LAYER, LAYERDRAW, PATTERN, RTFFILE, RTFTEXT, TEXT, and TEXTFONT) that have a parameter in which you can set the level of transparency, from 0 (full transparent) to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent). If you use these special values for the angle, you obtain a special alpha gradient:

360 Radial gradient
361 Elliptical gradient
362 Square gradient
363 Rhombus gradient
364 Conic gradient
401-500 Star gradient (the number of the points is equal to the angle minus 400)
You can also add these flags to the level@angle parameter:
! The transparency is inverted, starting from zero and ending with the indicated value
\$ The transparency starts from zero, goes to the level set in the parameter, and returns to zero
\%
The transparency starts from the level set in the parameter, goes to zero, and returns to the starting level

You can also specify a compression factor for the alpha gradient with level@angle\&compression syntax (100 is the default compression factor).

Labels and sequences

A label is used as a variable value in a script and may be initialized and used several times in the code. It can be initialized with this syntax:

```
[name] = value
```

And used specifying its name (always delimited with "[" and "]"). This is an example:

```
[alpha] = "This is a text"
FONT = Arial, 32, , #000000
TEXT = 1-10, [alpha], 0, 0, 6, 9, center
```

A sequence is a list of values used as a parameter in a directive. Each value is separated using the character pipe " \mid ". For each card in the directive's range the program uses a different element in a sequence (restarting from the first if the sequence' size isn't enough to fill the range), for example, if you want ten cards, half with the word "odd" and half with the word "even", you can use the TEXT directive, with a range 1-10 and a sequence of the two words as text parameter ("odd|even").

```
FONT = Arial, 32, , #000000
TEXT = 1-10, "odd|even", 0, 0, 6, 9, center
```

Sequences may be exceedingly long; you can manipulate them in a clearer manner if you use them in labels. Usually, a sequence must be on a single line, but you can split a long sequence into multiple lines, starting the first line with a " $\{$ " and ending the last line with a " $\}$ ". For example:

```
{[long] = "one|
twol
three|
fourl
five|
six
seven|
eight|
ninel
ten"}
FONT = Arial, 32, , #000000
TEXT = 1-10, [long], 0, 0, 6, 9, center
```

Tip: The split-line syntax with " $\{$ " and " $\}$ " can be used not only for sequences, but with every command.
If the label contains a sequence (like in the above example), you can obtain the number of elements contained using the syntax "(name)". It can be used directly as a parameter or in an expression. For example:

```
[alpha] = one|two|three
FONT = Arial, 32, , #000000
TEXT = 1-{(alpha)*2}, [alpha], 0, 0, 6, 9, center
```

The result deck will be composed of six cards, with the word sequence one-two-three-one-two-three.
If you want to extract a substring from the elements of a sequence, you can use the syntax [label:start,number] where start is the starting character and number is the length of the sub-string in characters. Example:

```
[alpha] = one|two|three
[beta] = [alpha:1,2]
```

It is equivalent to writing:

```
[beta] = on|tw|th
```

When you define a label, there are some characters you can use as prefix or postfix for the [name] to obtain special behavior.

```
[name] number = value
```

The resulting value is the original value repeated number times. Instead, with these letters as a prefix, you can use this program as a combinatorial engine:

C combination
P permutation
E derangement (permutation with no element in its original position)
F circular shift (right)
B circular shift (left)
CR combination with repetitions
PR permutation with repetitions
ER derangement with repetitions
Tn extracts only a random sample of n elements instead of the full set
$\mathrm{K} n \quad$ stops the creation of the sequence after n elements are added

```
C[name] number = object1|object2...objectN
P[name] number = object1|object2...objectN
E[name]number = object1|object2...objectN
F[name] number = object1|object2\ldotsobjectN
B[name]number = object1|object2...objectN
```

These syntaxes create two labels with a combination and a permutation of number objects from the sequences, for example:

```
C[label1]2 = A|B|C
P[label2]2 = A|B|C
E[label3]2 = A|B|C
F[label4]2 = A|B|C
B[label5]2 = A|B|C
```

these labels will be translated into:

```
[label1] = AB|AC|BC
[label2] = AB|AC|BA|BC|CA|CB
[label3] = BA|BC|CA
[label4] = AB|BC|CA
[label5] = AB|CA|BC
```

With repetitions:

```
CR[label1]2 = A|B|C
PR[label2]2 = A|B|C
ER[label3]2 = A|B|C
```

the result will be:

```
[label1] = AA|AB|AC|BB|BC|CC
[label2] = AA |AB|AC|BA |BB|BC|CA | CB |CC
[label3] = BA|BC|CA|CC
```

A sample of three elements:

CRT3[label1]2 $=\mathrm{A}|\mathrm{B}| \mathrm{C}$
one of the possible results could be:

```
[label1] = BC|AA|CC
```

Special flags:
D remove duplicate elements
X remove "rotated" elements
S remove elements with the same "structure"
N randomize elements
A sort elements in ascending order
Z sort elements in descending order
I keep only crossing paths
O keep only paths that does not cross themselves
The "D" flag is useful when you have multiple elements in combinations/repetitions, for example:
C[label1]2 =A|B|C|C
will be evaluated as:

```
[label1] = AB|AC|AC|BC|BC|CC
```

If you do not want repetitions, you can add the "D" flag (as a prefix) and the result will be:

```
[label1] = AB|AC|BC|CC
```

The " X " flag needs a longer explanation. Let us say, you need to create tiles with 4 quadrants, with all the combination of three elements (plains, woods, and mountains), this is the starting script:

```
CARDSIZE = 4, 4
[QUARTER1] = 0, 0, 2, 2, 0, 4
[QUARTER2] = 0, 0, 4, 0, 2, 2
[QUARTER3] = 4, 0, 4, 4, 2, 2
[QUARTER4] = 0, 4, 2, 2, 4, 4
PR[SCHEMA]4 = P|F|M
[ALL] = 1-{(SCHEMA) }
[COLOR_P] = #00FF00
[COLOR_F] = #008000
[COLOR_M] = #COCOC0
```

```
TRIANGLE = [ALL], [QUARTER1], [COLOR [SCHEMA:1,1]]
```

TRIANGLE = [ALL], [QUARTER1], [COLOR [SCHEMA:1,1]]
TRIANGLE = [ALL], [QUARTER2], [COLOR [SCHEMA:2,1]]
TRIANGLE = [ALL], [QUARTER2], [COLOR [SCHEMA:2,1]]
TRIANGLE = [ALL], [QUARTER3], [COLOR_[SCHEMA:3,1]]
TRIANGLE = [ALL], [QUARTER3], [COLOR_[SCHEMA:3,1]]
TRIANGLE = [ALL], [QUARTER4], [COLOR_[SCHEMA:4,1]]

```
TRIANGLE = [ALL], [QUARTER4], [COLOR_[SCHEMA:4,1]]
```

This is the result (4 pages of 81 tiles):

The tiles are all different, but not if you rotate them, for example, PFPF is equal to FPFP (rotated 90°). To eliminate them, you can use the " X " prefix. This is the result (1 page of 24 tiles):

The " X " flag can be used more than once, to specify that not all the "rotations" will be considered as equals; for example, with only one " X ", the sequence 0102 is equal to:
1020
0201
2010
In a square token with a number on each side, this is equal to 90° rotations. Instead, with " XX ", the sequence 0102 is equal only to 0201 (in a square token, this is equal to considering only rotations of 180°, or rather, that rotations of 90° are not considered).

The " S " flag removes elements with the same structure: for example, the sequence 0102 has the same structure of the sequence 1210. In the previous example, from the 24 tiles, only six have a different structure:

The " N " flag will be used if you want to randomize the sequence, if you write, for example:
$N[e l e m e n t s]=$ alpha|beta|gamma|delta
it will be randomly evaluated each time you validate the deck, for example as:
[elements] = beta|gamma|delta|alpha
After the number of elements, you can specify one or more filters, to keep only a subset of the results, with this syntax:
C[name] number;char1:min1-max1;char2:min2-max2... = ...
In the resulting sequence are added only the results that have char1 in several occurrences between min 1 and max1, char 2 between $\min 2$ and $\max 2$, and so on.

If you want to analyze only a sub-string from the result of the permutation/combination engine or an external linked file, you can use the "." syntax to extract a sub-string. For example, in the previous script about tiles, every line extract only a character from the label (composed of four characters), and associates it with another label:

```
TRIANGLE = [ALL], [QUARTER1], [COLOR_[SCHEMA:1,1]]
TRIANGLE = [ALL], [QUARTER2], [COLOR_[SCHEMA:2,1]]
TRIANGLE = [ALL], [QUARTER3], [COLOR_[SCHEMA:3,1]]
TRIANGLE = [ALL], [QUARTER4], [COLOR_[SCHEMA:4,1]]
```

If the label [SCHEMA] was, as an example, "PFPM", these lines will be evaluated as:

```
TRIANGLE = [ALL], [QUARTER1], [COLOR_P]
TRIANGLE = [ALL], [QUARTER2], [COLOR_F]
TRIANGLE = [ALL], [QUARTER3], [COLOR_P]
TRIANGLE = [ALL], [QUARTER4], [COLOR_M]
```

Tip: you can view a list of labels, their contents, and choose one of them from a list, clicking on the button "Insert" and choosing the menu voice "Label".

You can extract a single element in a sequence using the ? operator in an expression (delimited with curly brackets \{ and $\}$). If you omit the number, it is used the current card (i.e., is the same to use ? or ?§).

For example, this script will print the letter " c ":

```
[ALPHA] = a|b|c|d|e
FONT = ARIAL, 32, , #000000
TEXT = 1, {ALPHA?3}, 0, 0, 100%, 100%
```

There is also a syntax for creating labels with a condition and with a for...next cycle (note that you cannot define a label between standard IF...ENDIF or FOR...NEXT blocks):
[label]\%[condition], variable, start, end, step = value
The [condition] parameter must be a label (only if present since it is optional); it cannot be written directly because a condition is too complex to be evaluated correctly in a single line. This is an example:

```
[check1]=[a]=1
[check2]=[a]<>1
[color]%[check1]=#FF0000
[color]%[check2]=#0000FF
```

In this example, if [a] is $\mathbf{1}$, the label [color] is red (\#FF0000), if [a] is not $\mathbf{1}$, the label [color] is blue (\#0000FF).
The condition can be omitted, in this case the label is defined only if it does not already exist. In this example, the label [alpha] is red, and the label [beta] is blue:

```
[alpha]=#FFO000
[alpha]%=#0000FF
[beta]%=#0000FF
```

The label creation can be repeated in a for...next cycle, for example, if you want to define ten labels, with squares, you can write:

```
[lab(count)]%,(count),1,9 = {(count)^2}
```

Note that the condition parameter is empty (the comma after the $\%$ symbol), and that if the step parameter is omitted, its value is assumed equal to one. The variable (count) can be anything (the parentheses are not really needed). The result is equal to write this code:

```
[lab1]=1
[lab2]=4
[lab3]=9
[lab4]=16
[lab5]=25
[lab6]=36
[lab7]=49
[lab8]=64
[lab9]=81
```

Instead of a cycle between two values, this is an alternate syntax for the definitions of labels in a loop:

```
[label]%[condition], variable, [sequence] = value
```

In this syntax, a step in the loop is executed for each value of the sequence (value that is replaced in the variable), for example:

```
[seq] = alpha|beta|gamma
[lab_(var)]%, (var), [seq] = test_(var)
```

The result is equal to this script:

```
[lab alpha]=test alpha
[lab_beta]=test_\overline{b}eta
[lab_gamma]=test_gamma
```

Note that if [condition] is a sequence of more than one value, the result would be a sequence; if you want to obtain a sequence without using a [condition] parameter, you can replace it with the $\boldsymbol{\&}$ flag, for example:

```
[seq] = alpha|beta|gamma
[lab]%&, (var), [seq] = test_(var)
```

The result is equal to this script:

```
[lab]=test_alpha|test_beta|test_gamma
```

Note that the interaction between ranges and sequences is based on the extraction of the Nth element from a sequence when is rendered the Nth card in the range, i.e., if you have a range that does not starts with the $1^{\text {st }}$ card of the deck, the elements from the sequence are apparently extracted wrongly. Example:

```
[ALPHA] = a|b|c|d|e
FONT = ARIAL, 32, , #000000
TEXT = 3-5, [ALPHA], 0, 0, 100%, 100%
```

In the $3^{\text {rd }}$ card (the $1^{\text {st }}$ of the range) shows the letter a (the $1^{\text {st }}$ of the sequence). If you instead want to show the letter \mathbf{c} you must add a BASERANGE directive:

```
BASERANGE = 1-5, ON
[ALPHA] = a|b|c|d|e
FONT = ARIAL, 32, , #000000
TEXT = 3-5, [ALPHA], 0, 0, 100%, 100%
```

With the BASERANGE directive (see page 83), nanDECK uses the position of the Nth card from all the deck (and not from the range) to evaluate what element to extract from the sequence, and therefore in the $3^{\text {rd }}$ card it goes the $3^{\text {rd }}$ element (i.e., the letter c).

Label functions

AUTOLABEL

This function creates a label containing a sequence of numbers. This is the syntax:

```
[name] = AUTOLABEL(start, end, step, separator, padding)
```

For example, this line:

```
[a] = AUTOLABEL(1, 10, 2)
```

will be evaluated as:

```
[a] = 1|3|5|7|9|11
```

The standard separator is the pipe (the " \mid " character), if you want a different separator, you can specify it as the $4^{\text {th }}$ parameter. If you specify a number in the $5^{\text {th }}$ parameter, the result number is padded to the left with zeroes until the length of the number reach that parameter.

AUTORANGE

This function calculates a range starting from the previous AUTORANGE (or card 1, if it was the first instance), the only parameter is the number of cards in the range (or, if omitted, the number of lines in the linked file). This is the syntax:
[name] $=$ AUTORANGE (number)
For example, these rows:

```
[a] = AUTORANGE (10)
[b] = AUTORANGE (5)
[c] = AUTORANGE (8)
```

will be evaluated as:

```
[a] = 1-10
[b] = 11-15
[c] = 16-23
```

You can reset the counter, using a negative number as parameter. For example, these rows:

```
[a] = AUTORANGE (10)
[b] = AUTORANGE (-5)
[c] = AUTORANGE (8)
```

will be evaluated as:
[a] = 1-10
[b] = 1-5
$[c]=6-13$

CALC

This function is used to get a result from a specific function. The syntax is:

```
[label] = CALC(flag, value1, value2)
```

You can choose one of these flags:

C cosine of value 1
T tangent of value 1 arcsine of value 1 arccosine of value 1 arctangent of value 1
P pi (the other parameters are not used) the higher between value 1 and value 2 the lower between value 1 and value 2 A the absolute of value 1

CASESTRING

This function modifies the capitalization of a string, this is the syntax:

```
[label] = CASESTRING(string, flag)
```

You can choose one of these flags:
$\mathrm{U} \quad$ the string changes to uppercase
L the string changes to lowercase
F every first character in a string is changed to uppercase, the others to lowercase
If the flag is not specified, the string is changed to uppercase. Note that for texts printed with HTMLTEXT, there are also three flags in the HTMLFONT directive (see page 119).

COLRGB

This function creates a label containing a color, providing values from 0 to 255 for the three components, this is the syntax:

```
[name] = COLRGB(red, green, blue)
```


CONCAT

This function creates a label concatenating different strings (if you want to concatenate sequences, use JOIN, see page 36 , or PRODUCT, see page 39 , instead), this is the syntax:

```
[name] = CONCAT(parameter1, repeat1, parameter2, repeat2, ...parameterN, repeatN)
```

Each parameter is repeated several times equal to the next parameter. This is an example:

```
[test] = CONCAT(#000000, 3, #FFFFFF, 2)
```

Will be evaluated as:

```
[test] = #000000#000000#000000#FFFFFF#FFFFFF
```


CONCAT1

This function is equivalent to CONCAT, with a repetition of each parameter of one, this is the syntax:
[name] = CONCAT (parameter1, parameter2, ...parameterN)

COOFRAME

This function outputs the four coordinates of a frame (see page 45); instead of using the standard $<$ frame $>$ syntax, that is evaluated in the Validate step, this function is evaluated later, in the Build step. This is the syntax:

```
[name] = COOFRAME(frame, alignment, width, height)
```

In the alignment, width, and height optional parameters you can use the same syntax of a frame (see page 45).

COOFRAMES

This function is like COOFRAME and is used when there is more than one frame that can be selected. The $1^{\text {st }}$ parameter is the number of the frame, selected from all that have the name specified in the $2^{\text {nd }}$ parameter (you can also use wildcard characters like * and ?):

```
[name] = COOFRAMES(number, frame, alignment, width, height)
```

In the alignment, width, and height optional parameters you can use the same syntax of a frame (see page 45).

COOICON

This function returns the space occupied by an icon (x, y, width, height), given its key; if an icon with that key is not drawn on the current card, the function returns null coordinates and the directive that uses that coordinate does not draw anything. This is the syntax:
[name] = COOICON(key, type, width, height, index)
Instead of the whole space, you can use a section of it, specifying a type parameter, chosen from this list:
TL a section aligned to the top-left, using width and height as $\%$ of the icon space
TC a section aligned to the top-center, using width and height as $\%$ of the icon space
TR a section aligned to the top-right, using width and height as \% of the icon space
CL a section aligned to the center-left, using width and height as $\%$ of the icon space
CC a section aligned to the center, using width and height as \% of the icon space
CR a section aligned to the center-right, using width and height as $\%$ of the icon space
BL a section aligned to the bottom-left, using width and height as \% of the icon space
BC a section aligned to the bottom-center, using width and height as $\%$ of the icon space
BR a section aligned to the bottom-right, using width and height as $\%$ of the icon space
TW a section with the width of the icon space, aligned to the top, with a height as $\%$ of the icon space
CW a section with the width of the icon space, aligned to the center, with a height as $\%$ of the icon space
BW a section with the width of the icon space, aligned to the bottom, with a height as $\%$ of the icon space
HL a section with the height of the icon space, aligned to the left, with a width as $\%$ of the icon space
HC a section with the height of the icon space, aligned to the center, with a width as $\%$ of the icon space
HR a section with the height of the icon space, aligned to the right, with a width as $\%$ of the icon space
PTL a single point in the top-left
PTC a single point in the top-center
PTR a single point in the top-right
PCL a single point in the center-left
PCC a single point in the center
PCR a single point in the center-right
PBL a single point in the bottom-left
PBC a single point in the bottom-center
PBR a single point in the bottom-right
HTL a triangle, the top-left half of the icon space
HTR a triangle, the top-right half of the icon space
HBL a triangle, the bottom-left half of the icon space
HBR a triangle, the bottom-right half of the icon space
TTL a triangle, pointing to the top-left of the icon space
TTC a triangle, pointing to the top-center of the icon space
TTR a triangle, pointing to the top-right of the icon space
TCL a triangle, pointing to the center-left of the icon space
TCR a triangle, pointing to the center-right of the icon space
TBL a triangle, pointing to the bottom-left of the icon space
TBC a triangle, pointing to the bottom-center of the icon space
TBR a triangle, pointing to the bottom-right of the icon space
ET a line, from top-left to top-right of the icon space
EB a line, from bottom-left to bottom-right of the icon space
EL a line, from top-left to bottom-left of the icon space
ER a line, from top-right to bottom-right of the icon space
ED a line, from top-left to bottom-right of the icon space
EG a line, from bottom-left to top-right of the icon space

If you have used the \mathbf{P} flag in ICONS, and add an \mathbf{O} flag to the type parameter, the resulting space is the original area of the icon (without, it returns the proportional area of the icon).

If you do not specify the index parameter and there is more than one icon with that specific key, the result is a group of all of the spaces occupied by these icons. Otherwise, you can specify the Nth instance of an icon by using the index parameter

DIRFILES

This function creates a sequence label using names of files from a folder (and subfolders), this is the syntax:

```
[name] = DIRFILES(path, extension)
```

The extension can be a sequence of extensions, like jpg|bmp|gif.
This is an example:

```
[img] = DIRFILES("c:\images\", jpg)
```

and it will be evaluated as:

```
[img] = "c:\images\one.jpg|c:\images\two.jpg|c:\images\three.jpg"
```

Instead of an extension, you can specify in the $2^{\text {nd }}$ parameter a file mask (with * and $\boldsymbol{?}$ as wildcards). For example:

```
[img] = DIRFILES("c:\images\", "img*.jpg")
```

You can also combine the two parameters in one. For example:

```
[img] = DIRFILES("c:\images\img*.jpg")
```


ENVIRONMENT

This function reads an environment variable from the operating system, this is the syntax:

```
[name] = ENVIRONMENT(variable)
```

For example, this reads the path for the user folder:
[folder] = ENVIRONMENT(userprofile)

EVAL

This function creates a sequence with the results of the evaluation of another sequence, this is the syntax:

```
[name] = EVAL(sequence)
```

This is an example:

```
[alpha] = {1+1}|{2*3}|{3^3}
[beta] = EVAL([alpha])
```

These two lines are equivalent to:

```
[beta] = 216|27
```

Note: you obtain the same result with a single line:

```
[beta] = EVAL({1+1}|{2*3}|{3^3})
```


EXPAND

This function creates a sequence replicating itself numseq times, with each element replicated numele times (this parameter is optional, if not specified is treated equal to one):

```
[name] = EXPAND(sequence, numseq, numele)
```

This is an example:

```
[alpha] = a|b|c
[beta] = EXPAND([alpha], 2, 3)
```

These two lines are equivalent to:

```
[beta] = a|a|a|b|b|b|c|c|c|a|a|a|b|b|b|c|c|c
```

The numele parameter can also be a sequence of numbers, if you need to specify a different number of copies of each single element. For example:

```
[alpha] = a|b|c
[beta] = 1|2|3
[gamma] = EXPAND([alpha], 1, [beta])
```

These three lines are equivalent to:

```
[gamma] = a|b|b|c|c|c
```


FILTER

This function creates a sequence taking elements from another sequence, filtering and grouping them using some rules. The basic syntax is:
[name] = FILTER([name], filterl, filter2 ...filterN)
In the filterN parameters you can use wildcards: ? for any character, * for any characters, and use ranges of characters within parenthesis (as an example, $\mathbf{1 (0 - 9)}$ matches a number from 10 to 19). For example, this script will print only elements that start with a zero (four elements on eight):

```
[ALPHA] = 000|001|010|011|100|101|110|111
[BETA] = FILTER([ALPHA], 0*)
FONT = ARIAL, 32, , #000000
TEXT = 1-{(BETA)}, [BETA], 0, 0, 100%, 100%
```

In the $1^{\text {st }}$ parameter you can specify these additional flags:
§ the sorted/added elements are used to create the new sequence
(a) keep only the characters specified after this flag
\# discard all the characters specified after this flag
\$ (multiple, header) counts the maximum occurrences of a character(s) in the same element
? (multiple, header) counts the number of different characters(s) in the same element
$\wedge \quad$ (multiple, header) counts the maximum occurrences of specific character(s) in all positions on the previous accepted elements
~ (header) counts all the occurrences of specific character(s) in all positions on the previous accepted elements
$=\quad$ (multiple, header) counts the maximum occurrences of specific character(s) in the same position on the previous accepted elements
$£ \quad$ (header) counts the maximum occurrence of a straight of characters

- set the rule for evaluating a straight (if not specified, is used the ASCII sequence of letters/numbers)
$\% \quad$ (multiple) replace a character(s) with another(s), all the couples are specified after this flag
! counts the distance (in characters) between two copies of the same characters, specified after this flag
\& (header) the element is evaluated from his position within the sequence, starting from one
$\neg \quad(A L T+0172)$ the condition (for including or not an element) is reversed
_ if an element is not included, a null string is added in its position
ç the result is not padded with zeroes to the length of the longest element
. (multiple, header) a permutation is applied to the starting characters in each element
$: \quad$ (multiple, header) a combination is applied to the starting characters in each element
1 (ALT +0185 , multiple, header) is used to specify the number of elements in each permutation/combination
a (ALT +0170 , header) every permutation/combination is concatenated, instead of creating new elements

You can combine multiple flags and use a space if you want to mix two similar functions, for example, a $\$$ followed by $\$ \$$ can be coded as "\$ \$\$". The flags marked with header must be specified before the sequence, not after.

For example, this script will print only elements that contains one zero and two ones (three elements on eight):

```
[ALPHA] = 000|001|010|011|100|101|110|111
[BETA] = FILTER(>[ALPHA], 011)
FONT = ARIAL, 32, , #000000
TEXT = "1-{(BETA)}", [BETA], 0, 0, 100%, 100%
```

The flags marked with (multiple) in the above list (i.e.: $><+\boldsymbol{\$} \boldsymbol{?}^{\wedge}=\boldsymbol{\%}$.) can be repeated, when you must consider elements not as single characters, but as strings composed with more than one character. For example, the element " 0123 " gives these results:

```
+ 6
++ 24
> 0123
>> 0123
< 3210
<< 2301
```

This is as example for utilization of " $\$$ " flag. First, a label is created with all the permutations (with repetitions) of four elements from a set of five (a, b, c, d, and e), then, another label is created filtering only the occurrence of a three-of-akind and four-of-a-kind:

```
pr[a]4 = a|b|c|d|e
[b] = FILTER($[a], 3, 4)
FONT = ARIAL, 64, , #000000
TEXT = 1-{(b)}, [b], 0, 0, 100%, 100%
```

In this example, the same sequence is filtered to get only the labels that contains one or less repetitions of the same character in the same position:

```
pr[a]4 = a|b|c|d|e
[b] = FILTER(=[a], 0, 1)
FONT = ARIAL, 64, , #000000
TEXT = 1-{(b)}, [b], 0, 0, 100%, 100%
```

In this example of the replacement option (with the $\%$ option), the characters " a ", " d ", and " g " are replaced with the numbers " 1 ", " 2 ", and " 3 ":

```
[test_a] = abcldeflghi
[test_b] = FILTER(§[test_a]%a1d2g3)
```

The result sequence [test_b] is equal to:
1bc|2ef|3hi
Usually, the strings found and replaced with the \% option are the same length, but you can specify a null character using a \nless symbol (for inserting it, type ALT +0162). Example:
[test_a] $=$ abc|def|ghi
[test_b] $=$ FILTER (Sç[test_a] \% \%abx

Note the \mathbf{c} symbol added to disable the padding; the result sequence [test_b] is equal to:

```
xc|f|ghi
```

You can create a sequence of parameters with a "FOR=" keyword, for example, if you want ten numbers, instead of adding all of them you can use a single parameter like " $1-10 \mathrm{FOR}=-$ " (the $2^{\text {nd }}$ minus symbol is the position of the counter in the result.

Instead of a parameter used as a filter, you can specify a "mask" (with the prefix "MASK="), that is used to apply the filter only to some characters of the elements from the sequence; you specify a character that you want to consider with a " 1 ", and a character to ignore with a " 0 ". For example, if you want to apply the rules only to the even characters of a ten-character string, use this parameter: MASK=0101010101

If there are more than one rule in the $1^{\text {st }}$ parameter, and if you specify a number before the mask keyword, that mask is applied only to a single rule (1 for the $1^{\text {st }}$ rule, 2 for the $2^{\text {nd }}$, and so on).

GRADIENTSEQ

This function creates a sequence of gradients, splitting one into several sections, the syntax is:

```
[name] = GRADIENTSEQ(gradient, number, element)
```

For example, with this line the program creates a sequence of three gradients:
[gradient] = GRADIENTSEQ(\#000000\#FF0000@0, 3)

If you do not specify the $3^{\text {rd }}$ parameter, the sequence contains number element; instead, it contains only the Nth parameter, where N is the $3^{\text {rd }}$ parameter.

GROUP

This function takes all the elements in a sequence and removes all the duplicate elements, optionally, it can return a count of all the elements adding the keyword COUNT in the $2^{\text {nd }}$ parameter. The syntax is:

```
[name] = GROUP(sequence, function)
```

For example:

```
[alpha] = a|b|a|e|c|c|c|a|b|f|d|e
[beta] = GROUP([alpha])
[gamma] = GROUP([alpha], COUNT)
```

The two resulting sequences contain these values:

```
[beta] = a|b|c|d|e|f
[gamma] = 3|2|3|1|2|1
```


IMAGECREATE

This function can be used to create an image executing another nanDECK script, and it returns the name of the (temporary) image file (note that only card \#1 is saved). The syntax for this function is:

```
[name] = IMAGECREATE(script, param1, param2, param3, param4, param5)
```

The optional parameters can be used in the called script as labels, named respectively [param1], [param2], [param3], [param4], and [param5]. If you want to save a PNG image with a transparent color, you can specify it as a parameter, in the format PNGTRANS=color (example, PNGTRANS=\#FFFFFF). Note: in the "Config" window you can set the "Keep images made by IMAGECREATE" option to not delete the image created after each build (thus, speeding up the whole procedure).

INDEX

This function returns the position of a substring in a string, the syntax is:

```
[name] = INDEX(substring, string)
```

Note that both the parameters, or only one parameter, can be sequences, in this case the return is a sequence instead of a single value.

INFO

This function returns a value that depends on the flag used, the syntax is:

```
[name] = INFO(flag)
```

The flag can be one of this:
S the filename of the current script
C the number of the current card
N the number of cards in the deck
W card width (in current units)
H card height (in current units)
D card dpi
U name of the current units ($\mathrm{cm} / \mathrm{mm} / \mathrm{inch}$)
Y year (date)
M month (date)
A day (date)
O hour (time)
I minute (time)
E second (time)
X epoch

JOIN

This function uses alternatively the elements from two (or more) sequences for building a new sequence, the syntax is:

```
[name] = JOIN(sequence1, sequence2, ...sequenceN)
```

The length of the new sequence is equal to the longest source sequence. This is an example:

```
[label1] = A|B
[label2] = 1|2|3|4
[label3] = JOIN([label1], [label2])
```

The $3^{\text {rd }}$ label will be evaluated as:
[label3] = A1|B2|A3|B4

JOINIF

This function adds elements to a sequence using a condition to choose from two other sequences, the syntax is:

```
[name] = JOINIF(sequence, value1, condition, value2, sequence true, sequence
false, flags)
```

Every parameter can be a single value or a sequence. The condition can be one of these symbols:

```
= equal
<> different
> major
< minor
>= major or equal
```


$<=\quad$ minor or equal

@ contains
\# it does not contain
You can choose one of these flags:
M every set of condition, value2, sequence true, and sequence false are applied to every element of the sequence S the Nth set of condition, value2, sequence true, and sequence false are applied only to the Nth element of the sequence (the default)

This is an example:
[label] = JOINIF (A|B|C, 1|2|3, <=, 2, D|E|F, X)
The label will be evaluated as:
[label] = AD|BE|CX

LABELRANGE

This function creates a range, using elements from a sequence. The syntax for this function is:

```
[name] = LABELRANGE(sequence, value, offset)
```

If you specify the optional value parameter, the range is created with only the cards matching the value parameter position (wildcards * and ? are accepted). If you do not specify the value parameter, the default element from a sequence is considered " 1 ". The offset parameter, if specified, will be added to every card of the range.

For example:

```
[sequence] = 0|1|1|0|0|1
[label] = LABELRANGE([sequence])
```

Result:

```
[label] = "2,3,6"
```

The item parameter can also accept these operators (in the format operatorvalue):
$=\quad$ the item's position from the sequence is included if it is equal to the value (this operator can be omitted)
$<>\quad$ the item's position from the sequence is included if it is different from the value
$>\quad$ the item's position from the sequence is included if it is greater than the value
$<\quad$ the item's position from the sequence is included if it is smaller than the value
$>=\quad$ the item's position from the sequence is included if it is greater or equal to the value
$<=$ the item's position from the sequence is included if it is smaller or equal to the value
(a) the item's position from the sequence is included if the value is contained in it
\# the item's position from the sequence is included if the value is not contained in it
For example:

```
[sequence] = 1|2|3|4|5|6|7|8|9|10
[label] = LABELRANGE([sequence], >=5)
```

Result:

```
[label] = "5,6,7,8,9,10"
```


LABELSTRING

This function creates a string with elements taken from a sequence. The syntax for this function is:

```
[name] = LABELSTRING(sequence, number)
```

Without the optional number parameter, the result is a single string, taken from concatenating every element of the sequence. If you specify a number as $2^{\text {nd }}$ parameter, for every $\mathrm{n}^{\text {th }}$ element a new element of the sequence is created. For example:

```
[sequence] = A|B|C|D|E|F
[label] = LABELSTRING([sequence])
```

These two lines are equivalent to:

```
[label] = ABCDEF
```

Another example:

```
[sequence] = A|B|C|D|E|F
[label] = LABELSTRING([sequence], 2)
```

Result:

```
[label] = AB|CD|EF
```


LABELSUB

This function extracts a sequence from another, taken only the elements in a range, the syntax is:

```
[name] = LABELSUB(sequence, "range")
```

For example:

```
[sequence] = LABELSUB(alpha|beta|gamma|delta, "1,3-4")
```

Result:

```
[sequence] = alpha|gamma|delta
```


LENGTH

This function creates a new sequence with the lengths of the elements of the sequence in the $1^{\text {st }}$ (and only) parameter, the syntax is:

```
[name] = LENGTH(sequence)
```

For example:

```
[sequence] = ABC|DE|F|GH|IJK|LMNO
```

[label] = LENGTH([sequence])

Result:

```
[label] = 3|2|1|2|3|4
```

Note that letters outside the standard codepage read from a spreadsheet are converted to HTML codes and therefore with a length longer that one, therefore if you need the correct length, you should before read the spreadsheet with a LINKUNI=OFF line (see page 148).

LOOKUP

This function creates a label/sequence with the position of a label/sequence in a sequence, the syntax is:

```
[name] = LOOKUP(value, list)
```

For example:

```
[sequence] = LOOKUP(alpha|gamma|delta, alpha|beta|gamma|delta)
```

Result:

```
[sequence] = 1|3|4
```


MEASURE

This function gives as result the distance (in the current units) from a point specified in the parameters and following a direction until a different color is found. The syntax is:

```
[name] = measure(pos x, pos y, direction)
```

The direction parameter can be one of the following:

UP
DOWN
LEFT
RIGHT

PDFMERGE

This function creates a new PDF file, you can specify a file or a sequence of files as sources, with related page ranges (the syntax for a range is, for example, " $1-10,15,18,20-30 "$), if the result file is not already present, it is created (otherwise, it is overwritten). This function is the equivalent of the MERGEPDF directive (see page 151). The syntax is:

```
[name] = pdfmerge("result file", "source file", "source range", rotation)
```

Example (a loop to split a pdf into single pages):

```
[pdf]%, (a), 1, PDFPAGES(source.pdf) = PDFMERGE(split(a).pdf, source.pdf, (a))
```


PDFPAGES

This function returns the number of the pages contained in a PDF file. The syntax is:
[name] = pdfpages("filename")

PRODUCT

This function combines two (or more) sequences, in the result every element of the first sequence is combined with every element of the second sequence (and so on), the syntax is:

```
[name] = PRODUCT(sequence1, sequence2, ...sequenceN)
```

The length of the new sequence is equal to the product of the length of all source sequences. This is an example:

```
[label1] = A|B
[label2] = 1|2|3|4
[label3] = PRODUCT([label1], [label2])
```

The $3^{\text {rd }}$ label will be evaluated as:

```
[label3] = A1|A2|A3|A4|B1|B2|B3|B4
```


RANGEADD

This function combines several ranges in one, the syntax is:

```
[range] = RANGEADD("range1", "range2", ..."rangeN")
```

For example:

```
[range1] = "1-3"
[range2] = "2-4"
[range3] = "8-10"
[range] = RANGEADD([range1],[range2],[range3])
```

Result:

```
[range] = "1-4,8-10"
```


RANGECOUNT

This function returns the number of cards in a range, the syntax is:

```
[number] = RANGECOUNT("range")
```

For example:

```
[number] = RANGECOUNT("1,4-6,10-15")
```

Result:

```
[number] = 10
```


RANGEINS

This function takes a range ($1^{\text {st }}$ parameter) and add every Nth position ($2^{\text {nd }}$ parameter) another range ($3^{\text {rd }}$ parameter), optionally the $4^{\text {th }}$ parameter specifies how many times. The syntax is:

```
[range] = RANGEINS("range", position, "range", times)
```

For example:

```
[range] = RANGEINS("1-10", 3, "11-12")
```

Result:

```
[range] = "1,2,3,11,12,4,5,6,11,12,7,8,9,11,12,10"
```


RANGEINT

This function extracts the intersection of a series of intervals. The syntax is:

```
[range] = RANGEINT("range1", "range2",... "rangeN")
```

For example:

```
[range] = RANGEINT("1-10", "8-12")
```

Result:

```
[range] = "8,9,10"
```


RANGELABEL

This function converts a sequence of numbers into a range or a range into a sequence of numbers (the behavior is decided based on whether or not there is a sequence as a parameter).

```
[label] = RANGELABEL([sequence/range])
```

For example:

```
[seq] = 1|2|3|10
[range] = RANGELABEL([seq])
```

Result:

```
[range] = "1,2,3,10"
```

Another example:

```
[range] = "1-3,10"
[seq] = RANGELABEL([range])
```

Result:

```
[seq] = 1|2|3|10
```


RANGEMERGE

This function creates a new range mixing the cards from two or more ranges:

```
[range] = RANGEMERGE("range1", "range2", ..."rangeN")
```

For example:
[range] $=$ RANGEMERGE (1-5, 6-10)
Result:

```
[range] = "1,6,2,7,3,8,4,9,5,10"
```


RANGEMUL

This function creates a new range from pairs of range/number of repetitions of that range:

```
[range] = RANGEMUL("range1", num1, "range2", num2, ..."rangeN", numN)
```

For example:

```
[range] = RANGEMUL (1, 2, 3, 4)
```

Result:

```
[range] = "1,1,3,3,3,3"
```


RANGEREM

This function extracts a sub-range from another range, this is the syntax:

```
[range] = RANGEREM("range1", "range2", ..."rangeN")
```

This directive removes the ranges range $2, \ldots$ range N from rangel.
For example:

```
[range1] = "1-10"
[range2] = "3,4"
[range3] = "7-9"
[range] = RANGEREM([range1], [range2], [range3])
```

Result:

```
[range] = "1-2,5-6,10"
```


RANGESUB

This function extracts a sub-range from another range, this is the syntax:

```
[range] = RANGESUB("range", start, number)
```

The sub-range starts from the element specified by the start parameter and is composed of number elements. If the number parameter is missing (or equal to zero) the sub-range goes to the end of the initial range; if the start parameter is equal to zero, the sub-range starts from the last element taken with another RANGESUB function (or from the start of the initial range), in a behavior like that implemented with AUTORANGE function.

For example:

```
[range1] = "1-10"
[range] = RANGESUB([range1], 3, 4)
```

Result:

```
[range] = "3-6"
```


REPEAT

This function returns a string composed repeating the $1^{\text {st }}$ parameter several times equal to the $2^{\text {nd }}$ parameter. The syntax is:

```
[name] = REPEAT("string", number)
```


REPLACE

This function replaces in a string (or a sequence) all instances of a substring with another. The syntax for this function is:

```
[name] = REPLACE("string", "from", "to", flags)
```

You can choose one of these flags:
C the replacement is made case-sensitive (the default)
I the replacement is made case-insensitive
M every pair of from/to texts are applied to every element of the $1^{\text {st }}$ parameter (the default)
S the Nth pair of from/to texts are applied only to the Nth element of the $1^{\text {st }}$ parameter

ROUND

This function returns the $1^{\text {st }}$ parameter rounded, the $2^{\text {nd }}$ parameter specify the number of decimal digits (if not specified, it is zero, if it's a negative number, the rounding is by power of tens), the $3^{\text {rd }}$ parameter is a keyword that specify if the rounding is UP, or DOWN (if you don't specify it, the rounding is down when the rounded digit is 4 or less, and up if it's 5 or more). The syntax is:
[name] = ROUND(value, precision, keyword)

SAVELABEL

This function saves the content of a label (or more than one label) into a CSV text file or a spreadsheet file (if the extension of the filename is .xls or .xlsx). The syntax for this function is:

```
[name] = SAVELABEL("filename", label1 , label2, ...labelN)
```

The result label [name] contains the filename. Note: do not use the [] in the label parameters.

SCHEMA

This function creates a sequence label with multiple elements taken from another sequence, to be used to create structures like tables, when the number of sub-elements may change. The syntax for this function is:

```
[name] = SCHEMA(sequence, number, header, footer, body1, body2, ...bodyN)
```

Each element in the sequence may contain multiple sub-elements, each one delimited by an underscore "_"; each element contained in the resulting sequence is composed by the header, one body for each element of the starting sequence, and one footer; in these resulting elements you can replace parameters with sub-elements taken from the starting sequence; the syntax for these parameters is $((\mathrm{N})$), and the number of sub-elements that must be considered present in one of the body element of the resulting sequence is defined by the $2^{\text {nd }}$ parameter (number) of the function. For example:

```
[data] = "one_two|three_four_five_six"
[result] = SCHEMA([data], 2, "<table>", "</table>", "<tr> <td> ((1)) </td> <td>
((2)) </td> </tr>")
```

The [result] label is equal to (spaces are added to increase readability):

```
[result] = <table><tr> <td> one </td> <td> two </td> </tr></table>|<table><tr>
<td> three </td> <td> four </td> </tr> <tr> <td> five </td> <td> six </td>
</tr></table>
```

You can specify multiple body parameters, that are use one for each sequence element, i.e., if you specify two body parameters, one is used for odd elements, and the other for even elements.

STRINGLABEL

This function creates a sequence label with elements taken from a string. The syntax for this function is:

```
[name] = STRINGLABEL("string", length)
```

The optional length parameter sets the number of characters taken for each element of the sequence. If omitted, the length is one character. For example, these two lines are equivalent:
[label] $=$ STRINGLABEL("This is a test")
[label] $=$ "T|h|i|s| |i|s| |a| |t|e|s|t"

STRINGSUB

This function extracts a substring from a string, or a sequence of substrings from a sequence of string. The syntax for this function is:
[name] $=$ STRINGSUB("string", start, length)
If the length parameter is omitted, the substring is extracted until the end of the string.

TAGFRAME

This function can be used to associate a string to a frame (to be used as a color for VORONOI directive, see page 182), or to create a label that contains the strings associated with a frame. You can also specify a list of frames using the * symbol (and the resulting label will be a sequence). The syntax for this function is (when used to create a label, do not use the $\boldsymbol{t a g}$ parameter):
[name] $=$ TAGFRAME (frame, tag)

TOKENIZE

This function extracts a substring from a string, using a separator that slices the string into several tokens, and a number that specify the single token extracted. The syntax for this function is:

```
[name] = TOKENIZE("string", number, separator)
```

If the separator is not specified, is assumed to be equal to " \mid " (pipe), note that is the same separator for the elements in a sequence. For example:

```
[result] = TOKENIZE("Alpha-Beta-Gamma", 2, -)
```

The [result] label would be equal to "Beta"

TOKENIZESEQ

This function extracts a sequence from another sequence, using a separator that slices each element of that sequence into several tokens, and a number that specify which tokens are extracted; all the tokens are concatenated in the result sequence. The syntax for this function is:

```
[name] = TOKENIZESEQ("string", number, separator)
```

For example:
[result] = TOKENIZESEQ("Alpha-Beta-Gamma|Delta-Epsilon-Zeta|Eta-Theta-Iota",2,-)
The [result] label would be equal to "Beta|Epsilon|Theta"

TRANSLATE

This function replaces in a sequence (specified in the $1^{\text {st }}$ parameter) all the elements found in another sequence (specified in the $2^{\text {nd }}$ parameter) with elements taken from another sequence (specified in the $3^{\text {rd }}$ parameter). The syntax is:

```
[label] = TRANSLATE(sequence, sequence key, sequence value)
```

For example, this script:

```
[test] = x|y|x|w|x|y|y|z
[from] = x|y|z
[to] = a|b|c
[result] = TRANSLATE([test],[from],[to])
```

Gives this sequence as a result:

```
[result] = a|b|a||a|b|b|c
```


TRIMSTRING

This function removes the spaces at the start or at the end (or both) of a string/sequence, this is the syntax:

```
[label] = TRIMSTRING(string, flag)
```

You can choose one of these flags:
$\mathrm{L} \quad$ removes the spaces at the start of the string
R removes the spaces at the end of the string

Frames

A frame is a special label, used when you need to identify a rectangular area used for placing a graphical content. A frame is defined used this syntax

```
<name> = position x, position y, width, height
```

And can be used for example with a RECTANGLE directive:

```
RECTANGLE = 1, <name>, #000000
```

This is a behavior that can be done also with a label, but in a frame, you can add an alignment and a specific size, with this syntax:

```
<name, alignment, width, height>
```

The "alignment" can be a flag from this list:

TL	top-left
TC	top-center
TR	top-right
CL	center-left
CC	center-center
CR	center-right
BL	bottom-left
BC	bottom-center
BR	bottom-right

An example with all these nine alignments:

```
<frame> = 1, 1, 4, 7
FONT = Arial, 16, , #FFFFFF, #0000FF
RECTANGLE = 1, <frame>, #CCCCFF
TEXT = 1, "TL", <frame, TL, 1, 1>, CENTER, CENTER
TEXT = 1, "TC", <frame, TC, 1, 1>, CENTER, CENTER
TEXT = 1, "TR", <frame, TR, 1, 1>, CENTER, CENTER
TEXT = 1, "CL", <frame, CL, 1, 1>, CENTER, CENTER
TEXT = 1, "CC", <frame, CC, 1, 1>, CENTER, CENTER
TEXT = 1, "CR", <frame, CR, 1, 1>, CENTER, CENTER
TEXT = 1, "BL", <frame, BL, 1, 1>, CENTER, CENTER
TEXT = 1, "BC", <frame, BC, 1, 1>, CENTER, CENTER
TEXT = 1, "BR", <frame, BR, 1, 1>, CENTER, CENTER
Result: Figure 1
```

One between width and height can be expanded to the full extent of frame's width or height, using this syntax and one of these alignments for width:

```
<name, alignment, height>
```

TW top aligned, full width
CW center aligned, full width
BW bottom aligned, full width
Example:

```
<frame> = 1, 1, 4, 7
FONT = Arial, 16, , #FFFFFF, #0000FF
RECTANGLE = 1, <frame>, #CCCCFF
TEXT = 1, "TW", <frame, TW, 1>, CENTER, CENTER
TEXT = 1, "CW", <frame, CW, 1>, CENTER, CENTER
TEXT = 1, "BW", <frame, BW, 1>, CENTER, CENTER
Result: Figure 2
```


Figure 2

This syntax and these alignments are used for a full height:

```
<name, alignment, width>
```

HL full height, left aligned
HC full height, center aligned
HR full height, right aligned

```
<frame> = 1, 1, 4, 7
FONT = Arial, 16, , #FFFFFF, #0000FF
RECTANGLE = 1, <frame>, #CCCCFF
TEXT = 1, "HL", <frame, HL, 1>, CENTER, CENTER
TEXT = 1, "HC", <frame, HC, 1>, CENTER, CENTER
TEXT = 1, "HR", <frame, HR, 1>, CENTER, CENTER
Result: Figure 3
```

Another type of syntax can be used to extract only a position (useful with lines):

```
<name, alignment>
```

PTL top-left
PTC top-center
PTR top-right
PCL center-left
PCC center-center
PCR center-right
PBL bottom-left
PBC bottom-center
PBR bottom-right

```
<frame> = 1, 1, 4, 7
RECTANGLE = 1, <frame>, #CCCCFF
LINE = 1, <frame, PTL>, <frame, PBR>, #FFO000, 0.2
LINE = 1, <frame, PTR>, <frame, PBL>, #FF0000, 0.2
Result: Figure 4
```

Instead of using two frames, you can also combine two alignments of this type in a single frame, for example, with this script the result is the same of the above example:

```
<frame> = 1, 1, 4, 7
RECTANGLE = 1, <frame>, #CCCCFF
LINE = 1, <frame, PTL, PBR>, #FF0000, 0.2
LINE = 1, <frame, PTR, PBL>, #FF0000, 0.2
```

Instead of using a size (width or height) in cm, you can use a fraction of the whole frame size, using a number followed by "\%\%" (instead, a single "\%" gives you a size equal to a fraction of the whole card). For example:

```
<frame> = 1, 1, 4, 7
FONT = Arial, 16, , #FFFFFF, #0000FF
RECTANGLE = 1, <frame>, #CCCCFF
TEXT = 1, "TL", <frame, TL, 50%%, 50%%>, CENTER, CENTER
Result: Figure 5
```

Tip: you can view a list of frames, their contents, and choose one of them from a list, clicking on the button "Insert" and choosing the menu voice "Frame".

With these syntaxes, you can align a sub-frame starting from the last sub-frame, in the four directions:

```
TS top aligned, full width
BS bottom aligned, full width
```


SL left aligned, full height

SR right aligned, full height

```
<frame> = 1, 1, 4, 7
FONT = Arial, 16, , #FFFFFF, #0000FF
TEXT = 1, TS1, <frame, TS, 1>, CENTER, CENTER
FONT = Arial, 16, , #FFFFFF, #O0FFO0
TEXT = 1, TS2, <frame, TS, 1>, CENTER, CENTER
FONT = Arial, 16, , #FFFFFF, #FFO000
TEXT = 1, TS3, <frame, TS, 1>, CENTER, CENTER
FONT = Arial, 16, , #000000, #FFFFO0
TEXT = 1, TS4, <frame, TS, 0>, CENTER, CENTER
Result: Figure 6
```


Figure 6

In this example, the first frame can also be referenced with TW, and the result did not change.
If you specify a zero as the width/height of the element, it fills all the available space (the $4^{\text {th }}$ frame in this example).
With these flags, the program extracts three coordinates from the four of a frame, useful when using the TRIANGLE directive (see page 180), for a shape that fills half of the frame:

HTL top left, top right, and bottom left
HTR top left, top right, and bottom right
HBL top left, bottom left, and bottom right
HBR top right, bottom left, and bottom right
For example:

```
<frame> = 1, 1, 4, 7
RECTANGLE = 1, <frame>, #CCCCFF
TRIANGLE = 1, <frame, HTL>, #FF0000
```

Result: Figure 7

Figure 7

These flags also give three coordinates:
TTL an arrowhead with the point to the top-left corner of the frame
TTC an arrowhead with the point to the center of the top side of the frame
TTR an arrowhead with the point to the top-right corner of the frame
TCL an arrowhead with the point to the center of the left side of the frame
TCR an arrowhead with the point to the center of the right side of the frame
TBL an arrowhead with the point to the bottom-left corner of the frame
TBC an arrowhead with the point to the center of the bottom side of the frame
TBR an arrowhead with the point to the bottom-right corner of the frame
For example:

```
<frame> = 1, 1, 4, 7
RECTANGLE = 1, <frame>, #CCCCFF
TRIANGLE = 1, <frame, TTC>, #FF0000
Result: Figure 8
```

With several functions, you can create groups of frames, and referencing them with wildcards (the list is after this chapter):

* a group of any characters
? any one character
$\sim \quad$ a random frame from a group
! the first frame from a group, the frame is then deleted from the frame group (instead of the first frame, a random frame is selected if used with the " \sim " symbol)
/ normally, the frames created with a function are added to the existing ones; with this character in the frames' name, the definition rewrites the previous frames (the name is considered without "/")
- this is not a wildcard used in a frame name, but instead is used when the frame number is needed in a standard expression (with " $\{$ " and " $\}$ " delimiters)
this is not a wildcard used in a frame name, but instead is used when the frame name is needed in a text (without " $\{$ " and " $\}$ " delimiters).

Finally, in a frame name with ! or ~ wildcards, you can specify more than one frame adding a number before the symbol. For example, if you want three random green boxes from a grid, three blue and three red you can write:

```
[base] = FRAMEBOX(0, 0, 6, 9, 1, 1, E)
RECTANGLE = 1, <3!~base*>, #00FFO0
RECTANGLE = 1, <3! ~base*>, #0000FF
RECTANGLE = 1, <3! ~base*>, #FF0000
GRID = 1, 0, 0, 6, 9, #000000, 0.1, 6, 9
Result:Figure 9
```

Note: without the "!" symbol, the randomized frames may overlay themselves. Instead, without the " \sim " symbol, the frames are extracted from the start of the group. For example, with this script:

Figure 9

Figure 10

Frame functions

FRAMEBAR

This function creates a list of frames (see page 45) arranged in a line. The syntax for this function is:

```
[name] = FRAMEBAR(pos x1, pos y1, pos x2, pos y2, frame width, frame height,
number, zoom)
```

The frames are created with a name composed from the [name] and a number, the number goes from " 1 " to the $7^{\text {th }}$ parameter.

Example:
[bar] $=\operatorname{FRAMEBAR}(0,0,6,6,1,1,5)$
You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (\sim) symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and referencing the current frame's number with the degree $\left(^{\circ}\right.$) symbol (in an expression) or the current frame's name with the micro (μ) symbol (in a text).
The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change).

FRAMEBEZIER

This function creates a list of frames (see page 45) arranged in a Bezier curve. The syntax for this function is:
[name] = FRAMEBEZIER(pos $x 1, ~ p o s ~ y 1, ~ h a n d l e ~ x 1, ~ h a n d l e ~ y 1, ~ h a n d l e ~ x 2, ~ h a n d l e ~ y 2, ~$ pos $x 2$, pos y2, frame width, frame height, number, zoom, schema)

The frames are created with a name composed from the [name] and a number, the number goes from " 1 " to the $11^{\text {th }}$ parameter.

Example:
[bezier] $=\operatorname{FRAMEBEZIER}(0,0,3,0,3,6,6,6,1,1,10)$
You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (\sim) symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and referencing the current frame's number with the degree $\left(^{\circ}\right.$) symbol (in an expression) or the current frame's name with the micro (μ) symbol (in a text).
The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change). With the schema optional parameter you can change the precise position of the frames along the line, for example 0-20-40-60-$80-100$ is the default schema for six frames, $0-25-35-65-75-100$ is a modified schema for six parameters; furthermore, when the schema parameter is present, a sequence is also created (with the same name as the frames and the suffix _ang) which contains all the values of the angles tangential to the curve (if you do not want to calculate the values for a $\overline{\text { default schema, just add AUTO as schema parameter). }}$

FRAMEBOX

This function creates a list of frames (see page 45), based on a rectangular grid. The syntax for this function is:

```
[name] = FRAMEBOX(pos x, pos y, width, height, frame width, frame height, flags,
zoom x, zoom y)
```

The last parameters (zoom \boldsymbol{x} and zoom \boldsymbol{y}) are optional, if not specified are equal to 100 (no zoom); if you want half sized frames, you can specify 50 , if you want double sized frames, the value is 200 , and so on. The zoom can be different between horizontal and vertical values.
The frames are created with a name composed from the [name] and the flag in the $7^{\text {th }}$ parameter. You can use these flags:

L letters

$\mathrm{N} \quad$ numbers
P zero-padded numbers
C coordinates
E coordinates with letters and numbers
R coordinates with letters and numbers (numbers are reversed)
. dot separator for C flag

- minus separator for C flag underscore separator for C flag
$\overline{\mathrm{W}} \quad$ add only "white" squares in a chessboard
B add only "black" squares in a chessboard
With these flags, coordinates are added to each frame name:

L	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} \ldots$
N	$1,2,3,4 \ldots$
P	$01,02,03,04 \ldots$
C	$0101,0102,0103 \ldots 0201,0202,0203 \ldots$
E	$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \ldots \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3 \ldots$
C.	$1.1,1.2,1.3 \ldots 2.1,2.2,2.3 \ldots$
$\mathrm{C}-$	$1-1,1-2,1-3 \ldots 2-1,2-2,2 \ldots 3 \ldots$
$\mathrm{C} _$	$1 _1,1 _2,1 _3 \ldots 2 _1,2 _2,2 _3 \ldots$

If you did not specify any flag, the frames are created with the same name.
Example:
[box] $=\operatorname{FRAMEBOX}\left(0,0,4,3,1,1, C_{-}\right)$
The resulting frames will be:

```
<BOX1_1> = 0, 0, 1, 1
<BOX1_2> = 0, 1, 1, 1
<BOX1_3> = 0, 2, 1, 1
<BOX2-1> = 1, 0, 1, 1
<BOX2_2> = 1, 1, 1, 1
<BOX2_3> = 1, 2, 1, 1
<BOX3 1> = 2, 0, 1, 1
<BOX3-}2>=2, 1, 1, 1
<BOX3_3> = 2, 2, 1, 1
<BOX4_1> = 3, 0, 1, 1
<BOX4-}2>=3, 1, 1, 1
<BOX4_3> = 3, 2, 1, 1
```

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (\sim) symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and referencing the current frame's number with the degree $\left(^{\circ}\right.$) symbol (in an expression), or the current frame's name with the micro (μ) symbol (in a text). For example, if you want to split an image into 4 images (in a 2×2 pattern) and save them, you can use this script:

```
[a] = FRAMEBOX(0, 0, 6, 9, 3, 4.5, N)
IMAGE = 1, "c:\my images\earth.jpg", 0, 0, 6, 9, 0
SAVE = 1, "c:\my images\earth _{`}.jpg", <a*>
```


FRAMECLOCK

This function creates a list of frames (see page 45) arranged in a circle (like a clock's quadrant). The syntax for this function is:

```
[name] = FRAMECLOCK(pos x, pos y, width, height, frame width, frame height,
number, angle, zoom, start, end, factor)
```

The frames are created with a name composed from the [name] and a number, the number goes from " 1 " to the $7^{\text {th }}$ parameter.

Example:

[clock] $=\operatorname{FRAMECLOCK}(0,0,4,4,1,1,8)$
You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (\sim) symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and referencing the current frame's number with the degree $\left({ }^{\circ}\right)$ symbol (in an expression) or the current frame's name with the micro (μ) symbol (in a text).
The angle optional parameter is used if you want to rotate all the frames of a precise degree.
The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change).
The start and end optional parameters are used if you want to draw only an arc instead of full circle (both are degrees).
The factor optional parameter, if not zero, creates a spiral of frames, instead of a circle (positive for clockwise spirals, negative for anti-clockwise spirals).

FRAMECOUNT

This function creates a label with the number of frames from a single frame name, or a list of frame names. The syntax for this function is:

```
[name] = FRAMECOUNT(frame1, frame2, ...frameN)
```

In the [name] parameter you can use wildcards (? for any one character, * for a group of any characters).

FRAMEDISK

With this function, you can define a group of frames, specifying two frames, and including all the frames in the circle drawn used the first frame as a center and the latter as a radius. It works with frames created from FRAMEBOX and FRAMEHEX functions. The syntax is:

```
[diskgroup] = FRAMEDISK(frame center, frame radius)
```

For example:

```
CARDSIZE = 18, 20
HEXGRID = 1, 0, 0, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX(0, 0, 18, 20, 1, E)
[diskgroup] = FRAMEDISK(basee6, basee4)
POLYGON = 1, <diskgroup>, 6, 90, #FF0000
```


FRAMEHEX

This function creates a list of frames (see page 45), based on a hexagonal grid. The syntax for this function is:

```
[name] = FRAMEHEX(pos x, pos y, width, height, hex size, flags, zoom x, zoom y,
scale x, scale y)
```

The last parameters (zoom x,zoom y, scale x, and scale y) are optional, if not specified are equal to 100 (no zoom and no scale); if you want half sized frames or half the distance between frames, you can specify 50 , if you want double sized frames or double distance, the value is 200 , and so on. The zoom and the scale can be different between horizontal and vertical values.
The frames are created with a name composed from the [name] and the flag in the $6^{\text {th }}$ parameter. You can use these flags:

L letters

N numbers
P zero-padded numbers
C coordinates
E coordinate with letters + numbers
dot separator for C flag

```
- minus separator for C flag
underscore separator for C flag
O}\quad\mathrm{ outer frame (the default, it creates a frame suitable for drawing a circle outside the hex)
I inner frame (it creates a frame suitable for drawing a circle inside the hex)
X uses a pattern for obtaining "easy to cut" hexagons ("trihexagonal" tiling)
A the hexes are arranged in horizontal lines instead of vertical
S the line (or the column if the A flag is specified) starts with a shifted hex
        the 5 }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ parameter is read as the diameter of the hex, instead of the side of the hex (the default)
        the last row (or column) of shifted hexes is not drawn
```

With these flags, coordinates are added to each frame name:

L	A, B, C, D \ldots
N	$1,2,3,4, \ldots$
P	$01,02,03,04 \ldots$
C	$0101,0102,0103 \ldots 0201,0202,0203 \ldots$
E	A1,A2, A3 ...B1,B2,B3 \ldots
C.	$1.1,1.2,1.3 \ldots 2.1,2.2,2.3 \ldots$
C-	$1-1,1-2,1-3 \ldots .2-1,2-2,2-3 \ldots$
C_	$1 _1,1 _2,1 _3 \ldots 2 _1,2 _2,2 _3 \ldots$

If you did not specify any flag, the frames are created with the same name.
You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (\sim) symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use and referencing the current frame with the degree $\left(^{\circ}\right.$) symbol (in an expression) or the current frame's name with the micro (μ) symbol (in a text). For example, this script draws a circle on a random hex of the first column of a grid:

```
CARDSIZE = 18, 20
HEXGRID = 1, 0, 0, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX(0, 0, 18, 20, 1, E)
ELLIPSE = 1, <~basea*>, #FF0000
```


FRAMEIMAGE

This function creates a list of frames (see page 39), taking only the frames from a source list that contain more than a percentage of a color (or a similar color) read over a reference image file. The syntax for this function is:

```
[name] = FRAMEIMAGE(frames, "image file", color, threshold, percentage)
```

If not specified, the threshold parameter is considered zero, otherwise it is the difference between the color specified as $3^{\text {rd }}$ parameter and the colors read from the image; if not specified, the percentage parameter is considered 50 . For example:
[list] = frameimage(frame*, "europe.png", \#000000)
In this case, all the frames that start with "frame" are drawn over the "europe.png" file and are considered only those who are black over the 50% of their area.

FRAMELINE

With this function, you can define a group of frames, specifying a first frame, a last frame, and including all the frames in the shortest path between the two. It works with frames created from FRAMEBOX and FRAMEHEX functions. The syntax is:

```
[linegroup] = FRAMELINE(frame start, frame end)
```

For example:

```
CARDSIZE = 18, 20
HEXGRID = 1, 0, 0, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX(0, 0, 18, 20, 1, E)
```

```
[linegroup] = FRAMELINE(basea1, baseh9)
POLYGON = 1, <linegroup>, 6, 90, #FF0000
```


FRAMELIST

With this function, you can define a group of frames, and use a single command on all of them. The syntax is:

```
[group] = FRAMELIST(frame1, frame2, ..frameN)
```

You can specify a single frame for parameter, or use another group of frames, or specify a range of frames using the syntax frameX..frameY (to add every frame with that name and numbered between X and Y). Before the name of the frame, you can use these flags:
$£ \quad$ the frames are reversed on each line (from top to bottom, from right to left)
\$ the frames are in bidirectional order (from left to right in the first row, from right to left in the next row, and so on...)
$\% \quad$ the frames are listed in vertical order (from left to right, from top to bottom)
$\% £ \quad$ the frames are reversed on each vertical line (from left to right, from bottom to top)
$\% \$$ the frames are in bidirectional vertical order (from top to bottom in the first column, from bottom to top in the next column, and so on...)

- the order with the frames in a group are added is completely reversed (it can be added to each of the above combinations
After the name of the frame, you can specify how many frames are skipped with the syntax frame\& \mathbf{N} where \mathbf{N} is the number of the frames to skip.
For example, this script draws three circles on the first three hexes in the top-left corner of a grid:

```
CARDSIZE = 18, 20
HEXGRID = 1, 0, 0, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX(0, 0, 18, 20, 1, E)
[group] = FRAMELIST(basea1, basea2, baseb1)
ELLIPSE = 1, <group>, #FF0000
```


FRAMEMAZE

This function reads a list of edge frames as $1^{\text {st }}$ parameter (created with a FRAMEPER function), and creates another list of edge frames, arranged as a maze. The $2^{\text {nd }}$ and $3^{\text {rd }}$ parameters are the width and height of the rectangle defined by the edge frames. You can specify the coordinates of the starting cell (as $4^{\text {th }}$ and $5^{\text {th }}$ parameter), otherwise it is randomly selected (this also when set to zero); the ending cell is selected as the farthest from the starting one. You can specify a non-rectangular shape for the maze using a list of frames as $7^{\text {th }}$ parameter. The syntax is:

```
[newframe] = FRAMEMAZE(frames, width, height, X start cell, Y start cell, flags,
frames)
```

You can use these flags in the $6^{\text {th }}$ parameter:
S is created a group of frames for the solution
M is created a group of frames with the sequence used in the creation of the maze
E the exit is along the edge of the maze
At the end of the process other two frames are created, one for the starting cell (with postfix start) and one for the ending cell (with postfix end); if the \mathbf{S} flag is used is created also a group of frames for the solution (with postfix solution), i.e. the path from the starting to the ending cell; if the \mathbf{E} flag is specified is created also two frames for the edge of the starting cell (with postfix startedge) and for the ending cell (with postfix endedge); if the \mathbf{M} flag is specified is created also a group of frames with the sequence used for creating the maze (with postfix map).

This example creates two cards, one with the maze, starting and ending cells, and one that adds the solution:

```
[x] = 20
[y] = 20
CARDSIZE = [x], [y]
[cell] = FRAMEBOX(0, 0, [x], [y], 1, 1)
[edge] = FRAMEPER(cell, 0.1)
[maze] = FRAMEMAZE (edge, [x], [y], 0, 0, S)
```

```
RECTANGLE = 2, <mazesolution>, #FFFFO0
ELLIPSE = 1-2, <mazestart>, #FFO000
ELLIPSE = 1-2, <mazeend>, #00FF00
RECTANGLE = 1-2, <maze>, #0000FF
FONT = Arial, 10, T, #000000
TEXT = 2, { `}}, <mazesolution>
```


FRAMEMELD

With this function, you create a new frame, merging several others. The syntax is:

```
[newframe] = FRAMEMELD(frame1, frame2, ...frameN)
```

For example:

```
CARDSIZE = 18, 20
HEXGRID = 1, 0, 0, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX(0, 0, 18, 20, 1, E)
[group] = FRAMEDISK(basef3, basef1)
POLYGON = 1, <group>, 6, 90, #FF0000
[meld] = FRAMEMELD(based1, baseh5)
ELLIPSE = 1, <meld>, #0000FF, EMPTY, 0.2
```


FRAMEMOSAIC

This function reads all the images in a folder, arrange them in a rectangle, and creates a new group of frames, one for each image. If the images fill more than one instance of that rectangle, you can use a page parameter to specify which rectangle is drawn from all the possible choices. The frames are created with a name composed from the [name] and a number, the number starts from " 1 ". The syntax for this function is:

```
[newframe] = FRAMEMOSAIC("folder", pos x, pos y, width, height, page, flags,
zoom)
```


Parameters:

"folder": a folder to search, eventually with a file pattern
position \mathbf{x} : horizontal position (in cm)
position y: vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm)
page: if not specified, is equal to 1
flags: one or more of these flags:
H the schema is mirrored horizontally
V the schema is mirrored vertically
S the images are read also in the subfolders
zoom: if not specified, is equal to $\mathbf{1 0 0}$
This function creates also a label named namePAGES (where name is the frames' prefix) with a value equal to the number of pages resulting.

FRAMENET

This function creates a new group of frames, composed with all possible couple from two groups of frames, eventually including only these contained with a range of distances. The syntax is:

```
[newframe] = FRAMENET(frame group 1, frame group 2, min distance, max distance,
```

flags)

In the parameter flags, you can use one or more of these flags:
L the frame(s) added is from the center of the starting frame to the center of the ending frame (it can be used for drawing lines), this is the default option
N the frame(s) added is the ending frame
1 the frame(s) added are only from the $1^{\text {st }}$ quadrant (top-right)
2 the frame(s) added are only from the $2^{\text {nd }}$ quadrant (bottom-right)
3 the frame(s) added are only from the $3^{\text {rd }}$ quadrant (bottom-left)
4 the frame(s) added are only from the $4^{\text {th }}$ quadrant (top-left)
If you did not specify any of flags $\mathbf{1 2 3 4}$, the frames are taken from all the starting lists.
For example, this is a net from all the points in a rectangular grid, with a maximum distance of four units:

```
[net0] = FRAMEBOX (0, 0, 6, 9, 1, 1, L)
[net1] = FRAMENET(net0*, net0*, 0, 4)
LINERECT = 1, <net1>, #000000
```

Another example, this is a "star map", connecting ten random "planets" in a hexagonal grid with a distance from two to four units:

```
[map0] = FRAMEHEX(0, 0, 6, 9, 0.1, L, 50%)
[map1] = FRAMELIST(10! ~map0*)
[map2] = FRAMENET(map1, map1, 2, 4)
LINERECT = 1, <map2>, #000000
ELLIPSE = 1, <map1>, #0000FF
```


FRAMEPATH

With this function, you can define a group of frames, specifying a first frame, a last frame, and including all the frames in the shortest path between the two, and optionally remove a list of frames (specified in the $4^{\text {th }}$ parameter) from the result. It works with frames created from FRAMEBOX. The syntax is:

```
[pathgroup] = FRAMEPATH(frame start, frame end, flags, exclusions)
```

In the parameter flags, you can use one or more of these flags:
F add frame1 to the result group
L add frame 2 to the result group
D delete the frames used for the path
S delete the frame used as $1^{\text {st }}$ parameter (start frame)
E delete the frame used as $2^{\text {nd }}$ parameter (end frame)
T use the shortest path
For example:

```
[grid] = FRAMEBOX(0, 0, 6, 9, 0.5, 0.5, C)
[path1] = FRAMEPATH(grid0203, grid1116, D)
[path2] = FRAMEPATH(grid0203, grid1116, D)
[path3] = FRAMEPATH(grid0203, grid1116, D)
RECTANGLE = 1, <grid*>, #0000FF, #FF0000, 0.1
ELLIPSE = 1, <path1>, #AAAAAA, #00FF00, 0.05
ELLIPSE = 1, <path2>, #AAAAAA, #0000FF, 0.05
ELLIPSE = 1, <path3>, #AAAAAA, #FF0000, 0.05
```


FRAMEPER

This function creates a new group of frames, adding for each starting frame the four frames from its sides (the starting frame is considered rectangular). The syntax is:

```
[newframe] = FRAMEPER(frame group, width, flags, margin)
```

The width parameter specifies the width of the left and right frames, and the height of top and bottom frames. In the parameter flags, you can use one or more of these flags:

1 a frame for the top side of the rectangular frame is added to the result
2 a frame for the right side of the rectangular frame is added to the result
3 a frame for the bottom side of the rectangular frame is added to the result
4 a frame for the left side of the rectangular frame is added to the result
V with this flag the frames are created in vertical order (instead of a horizontal order)
N with this flag the frames are created with individual names: name N (top), nameE (right), nameS (bottom), name W (left)
E with this flag only single copy frames are added, i.e. internal frames are not included in the group, only external ones

If you did not specify any of flags $\mathbf{1 2 3 4}$, all the four frames are added. The margin parameter specifies how much space is added to the left and to the right (for horizontal sides) and to the top and to the bottom (for vertical sides) of the frame.

FRAMERECT

With this function, you can define a group of frames, specifying two frames, and including all the frames in the rectangle drawn used the first frame as top-left and the latter as bottom-right. It works with frames created from FRAMEBOX and FRAMEHEX functions. The syntax is:

```
[rectgroup] = FRAMERECT(frame start, frame end)
```

For example:

```
CARDSIZE = 18, 20
HEXGRID = 1, 0, 0, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX(0, 0, 18, 20, 1, E)
[rectgroup] = FRAMERECT(baseb3, basei6)
POLYGON = 1, <rectgroup>, 6, 90, #FFO000
```


FRAMESUB

With this function, you can define a new frame from another frame ($1^{\text {st }}$ parameter), removing items from a third frame ($2^{\text {nd }}$ parameter). The syntax is:

```
[group] = FRAMESUB(frame1, frame2)
```

For example, this script uses two square group of frames for creating a third hollow group of frames (subtracting the second from the first):

```
[grp_a] = FRAMEBOX(0, 0, 6, 6, 1, 1, C)
[grp b] = FRAMEBOX(1, 1, 4, 4, 1, 1, C)
[grp_c] = FRAMESUB(grp_a*, grp_b*)
ELLIPSE = 1, <grp_c*>, #00FF00
```


FRAMETRANS

This function creates a new group of frames, taking all the frames from a group, and applying to them a horizontal and a vertical offset, and optionally a change in width and height. The syntax is:

```
[newframe] = FRAMETRANS(frame group, x offset, y offset, width change, height
change)
```

For example, this line takes all frames from group test, and creates a group test_trans shifted right of 0.5 :

```
[test_trans] = FRAMETRANS(test, 0.5, 0)
```


FRAMETRI

With this function, you can define a group of frames, specifying three frames, and including all the frames in the triangle drawn used the frames as vertexes. It works with frames created from FRAMEBOX and FRAMEHEX functions. The syntax is:

```
[trianglegroup] = FRAMETRI(frame1, frame2, frame3, flags)
```

You can use these flags in the $4^{\text {th }}$ parameter:
$\mathrm{O}=$ does not include the outer frames
$\mathrm{I}=$ does not include the inner frames
For example:

```
CARDSIZE = 18, 20
HEXGRID = 1, 0, 0, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX(0, 0, 18, 20, 1, E)
[trianglegroup] = FRAMETRI(baseb3, basei6, basec10)
POLYGON = 1, <trianglegroup>, 6, 90, #FFOOOO
```


Expressions

Expressions may be used to calculate numeric parameters or numbers in TEXT parameters, these delimited with "\{" and " $\}$ ". You can use numbers (integer and decimal separated with a dot "."), parenthesis and these operators:

```
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
# modulus
£ integer division
```

For changing the order of operations, you can use "(",")", "\{" and "\}", these are treated like the same. You cannot use "[" and "]" (used for labels).

For example, these are valid expressions:

```
RECTANGLE = 1, 0, 0, (1+2)*2, (1+2)^2, #FF0000
TEXT = 1, "Result {(2+2)^2}", 0, 0, 6, 9, center
```

This is a special variable: the paragraph character (§) gives you the current card number; for example, that script creates ten cards, each with a number from 1 to 10 :

```
FONT = Arial, 32, , #000000
TEXT = 1-10, "{$}", 0, 0, 6, 9, center
```

That script creates ten cards, each with a random number from 1 to 100 :

```
FONT = Arial, 32, , #000000
TEXT = 1-10, "{1d100}", 0, 0, 6, 9, center
```

Counters are variables, that can be used in expressions; there are two kinds of counter, these are used for integer values:

```
A B C D E F G H I J
```

And these are used for floating-point values:

```
AA BB CC DD EE FF GG HH II JJ
```

A counter can be initialized with COUNTER directive:

COUNTER $=1, A, 1$
and later re-used in an expression:

```
RECTANGLE = 1, 0, 0, A, A, #OOFFOO
```

A counter can be auto incremented with a pre- and/or a post- number. If A has a value of 10 , this command:

```
TEXT = 1, "{1A2}", 0, 0, 3, 3, center
```

will give an output of 11 , and A will have a value of 13 after that line.
The counter D is a special case, it has been changed for default into a dice (see DICE keyword, page 98), to give a random value, the syntax is $n \mathrm{~d} f$, where n is the number of dice, each with f faces. If not specified, n is set to one, and f is set to six.

These are special symbols:

```
Z Format
X Repeat
```

The " Z " symbol may be used when you need to format a decimal value with a fixed number of digits. The syntax is valueZmask, where the mask is a sequence characters for the integer part, a dot (".") and a sequence characters for the decimal part. The characters that can be used for the mask are:

0 a digit taken from the number, if there is not a digit in that position, a zero ("0") is written instead
\# a digit taken from the number, if there is not a digit in that position, a space (" ") is written instead
For example:

```
FONT = Arial, 32, , #000000
TEXT = 1, "{4/3Z00.00}", 0, 0, 6, 9, center, center
```

The result will be a " 01.33 " printed on the card.
The syntax for the " X " symbol is textXnumber and duplicates the text for several times. For example:

```
FONT = Arial, 32, , #000000
TEXT = 1-5, "{*X§}", 0, 0, 6, 9, center, center
```

Will output an asterisk on the $1^{\text {st }}$ card, two asterisks on the $2^{\text {nd }}$ card, three on the $3^{\text {rd }}$ and so on.

Comments

Comments can be inserted in scripts, marking them with a character on the start of the line. The character can be an apostrophe (') or a semicolon (;) or a custom character selected from the "Config" window.

Example:

```
CARDS = 52
'This is a standard deck
```

From the "Config" window you can also check the "Use in-line comments marked by ..." option, and after that you can use a syntax like that:

CARDS $=52$ ' \quad This is a standard deck

If you use a custom character and open your script on another computer (with a different configuration) your comments will not be evaluated as such. To avoid this problem, you must include a COMMENT directive at the start of your script (see page 95).

You can apply or remove the current comment's character in a block of selected text with two buttons on the right side of the main window: "+Com" for apply comments and "-Com" for removing comments.

Script lists

If you must work on multiple scripts, you can create a list for manipulating them. You can activate this option clicking on the button "Script list":

With the buttons on the right side, you can create a new list, open an old list, save the current list (with the current name or specifying another), add another script to the list, remove a script and sort the list. You can also open the selected script, or open all of them (in multiple tabs), create a list from all the current scripts and erase the selected script.
With the button "Run list" you can launch a "Validate and build" task on all the scripts listed in this window, choosing the output for them with the "Output" box: you can print the result, create PDF, and save the images in bmp, jpg, png or tiff format (the latter with standard and CMYK color space). With the "Filename number" box you can choose if the filename must be chosen from card number or card count: it can be different if you use a PRINT directive (see page 159) in your scripts.

Create PDF

The button "PDF" in the main window opens this form:

With this form, you can specify a filename and an author for the PDF file.
PDF/A: with this option, the PDF file is saved in this format.
Use JPEG Compression form images: with this option enabled all the images in the PDF file are internally stored in JPEG format.

Use scaled images: with this option enabled, the program uses a high image compression for the PDF file, reducing its size (and its quality).

PDF compression level: you can choose between four standard compression level for the images (None, Low, Default and Max).

Save a copy with a CMYK color space: if you have installed Ghostscript (http://www.ghostscript.com) you can also save it with CMYK color space (instead of RGB), specifying the path for the executable (Gswin32c.exe), and use an ICC color profile.

Save images

The button "MT" in the main window opens this form:

With this form, you can specify a path for saving the cards' images, the file format, the number of threads to be used, the DPI (see page 101) and oversampling (see page 153) values.

Note: every thread uses a separate memory pool, thus it is possible to use more than 4GBytes of memory.

Convert a PDF to images

The button " $\mathbf{C P}$ " in the main window opens this form:

If you have installed Ghostscript (http://www.ghostscript.com) you can convert PDF files into images. The first field is for the Ghostscript executable; the second is the name of the PDF file, the third is for the resulting images (you can use the \S character for the page number); the fourth field is for the DPI resolution of the final images.

Command-line parameters

You can run nanDECK from the command line (if you want to execute a script in a batch, for example). The syntax is:

```
nanDECK <script file> <1st action> <2 nd action> ... <n th action>
```

The action parameter can be one or more of the following:

```
/createbmp
/createjpg
/createpng
/creategif
/createtif
/createtifcmyk
/creategifa
/createpdf
/createpdfa
/print the program creates all the cards and prints them with the default printer
/exec the program runs the script (useful when using SAVE directive)
/range= the program creates only a range of the card, with the syntax start-end (for example /range=1-10)
/output= this is the path for the resulting files
/dpi= you can specify a different DPI value (the value in the script is not used)
/oversample = you can specify an oversample value (the value in the script is not used)
/name= the program uses a label for the name of the card when saved as individual images
/[label]=value the program adds a label with that name and that value
/nopdfdiag the dialog for the creation of a pdf file is not shown
```

For example, to save all images obtained with script "c:\my scripts\test01.txt" in png files, you can write:

```
nanDECK "c:\my scripts\test01.txt" /createpng
```

To create a pdf with all the cards, you can write:

```
nanDECK "c:\my scripts\test01.txt" /createpdf
```

The images are created in the same folder for the script, and for multiple images, a number will be added to the end of the filename. In the $1^{\text {st }}$ example, the images will be named:

```
c:\my scripts\test01_01.png
c:\my scripts\test01_02.png
c:\my scripts\test01_03.png
```

In the $2^{\text {nd }}$ example, the file will be named:

```
c:\my scripts\test01.pdf
```

If you leave the action parameter empty, the program will only load the script specified in the $2^{\text {nd }}$ parameter.

Keyword wizard

In this program, you can use a wizard for inserting keywords (and specifying all the parameters). In the main editor, if you want to insert a directive, right click on an empty row and a menu appears, with all the keywords, if you click on one entry, the corresponding wizard form will be showed:

For every keyword, a different wizard form appears, with all the parameters (obligatory and optional). The same window appears if you press "F2" (modify) key on a pre-existent row (or right-click on the same pre-existent row). For example, this is the RECTANGLE wizard form:

Optional parameters are in italic (like Thickness in the above form). A hint for the syntax is show in the bottom of the form, with the "Confirm", "Help" (it points to the RECTANGLE help page) and "Cancel" buttons. For some parameters, there are buttons for inserting specific values (like colors and gradients). For position and size there is a specific form ("Pick rect." Button, in the above form):

The rectangle can be moved and resized, dragging it with the mouse; you can use the rightmost buttons to change the rectangle size or position into some standard values.

Tip: you can go directly to this form, pressing the key F3 (or clicking the "Visual edit" button) where you are on a line with a graphic directive.

In the wizard form, if you double click in a field, you can choose a label name from a list (you can see also the label's value):

Tip: in every field, you can use the mouse wheel to increase / decrease a numeric value.

Linked data editor

If you use a LINK directive (see page 140) to use a CSV data file, you can edit directly this file using the "Linked data" button. If you click on it, the program shows you a list of linked files. If you choose one of this, a window opens itself, showing you a table with the file content. For example:

You can modify directly a cell clicking on it (there is a larger edit box on the bottom of the window), you can also change the table' sorting with a click on the column (one click sets an ascending order, another click sets a descending order, it doesn't work for larger fields). With the buttons on the right, you can do some tasks, like insert or delete a record, add, delete, or rename a column (a field), update the lists of data (in the drop-down menu in each field), hide or show the editor, open an external RTF editor (for the current field), or close the window.

The two buttons "Validate deck" and "Build deck" on the left are replicated from the main window. With the other buttons on the left, you enable or disable the current row (putting a ' in front of it) or enable or disable all the rows. You can also enable only the current row or setting the range for the deck building. With the buttons on the lower side of the window (under the edit box) you can move the current record (first, previous, next, and last), add (+), delete (-), edit (the triangle), confirm (the check sign) or discard (X) the changes in a record.

All the change made in this window to the linked file will be saved if you save the main script file.

Tip: you can instantly build a single card with a double click on one row of data.

Tip: you can instantly open the external RTF editor with a double click on the lower editor.

Tip: you can select the external RTF in the "Config" button from the main window.

Virtual table

The "Virtual table" option is a desktop in which you can put the result of card rendering, you can use it for saving images for a manual or play test the drawing of cards from a deck. Without modifying your script, you can view the Virtual table clicking on the button "Table" after building a deck. Then you can see a window with your deck in the center of the screen, and you can use these commands:

Mouse commands on decks

click select deck
double click
shift double click
right click
resize
shift resize
ctrl resize
draws a card face up
draws a card face down
rotate deck 90°
resize deck image
resize deck image without keeping size ratio
resize deck image from the center

Mouse commands on cards

click
double click right click resize shift resize ctrl resize
mouse wheel
ctrl click pick all the cards and the decks under the cursor and create a new deck
select card
turn card face down/face up
rotate card 90°
resize card image
resize card image without keeping size ratio resize card image from the center zoom table

In the bottom line of the window, you can read the number of cards in the selected deck. On the right panel, you have these controls:

Reset table
Reset deck
Display deck
this button reset to the initial state all the decks and the elements on the table this button reset to the initial state the selected deck
this button draws all cards in the deck, and position them left to right, top to bottom in the table

Select a card
Delete
Draw (number)
Position
Rotate
Position +-
Position slider
Align to Grid
Zoom slider
1:1 button
Card preview
Show canvas
Auto select
Show tags
Bring to front
Move stacks
Hide handles
Save image
Close
this button lets you to select a single card from a deck this button deletes the selected object (deck, card, or token)
the number of cards specified is drawn each time you double click on a deck
the card drawn from the deck is placed to this position, relative to its deck
after a card is draw, the position is moved to the next
the card drawn is placed in a slightly random direction
the amount of the offset of the position when the last option is enabled
the card drawn is placed in a grid of the same size of the card
this slider enlarges or reduce the table size
this button reset the zoom
this button show the current card, enlarged
the canvas is shown as a background image
the elements of the table are selected automatically when the mouse pass over them
the tags (see page 172) are shown in the four quadrants of the table
an object clicked is pushed to the front, before all the other objects
when you move a card, all the other cards on top of it are also moved
the handles (for resizing the objects) are not shown
the table is saved as a bmp file
you close this window

This is the window that the program shows you to select a single card from a deck:

There are two directives that you can use in your script to customize the Virtual table: the DECK directive splits the cards in more than one deck, and the TOKEN directive creates some elements to be used on the table, with a fixed text or a randomized value, in the latter case you can "roll" the token with a double click on it.

Example:

```
DECK = "1-26", "Red", #FF0000, 30%
DECK = "27-52", "Black", #0000FF, 30%
TOKEN = "{1d6}", 50, 50, #FFFFFF, #0000FF, 1
TOKEN = "{1d6}", 50, 50, #FFFFFF, #FF0000, 1
TOKEN = "$", 100, 50, #FFFFFF, #00FF00, 10
```

Both in DECK and TOKEN directives you can specify a list of frames for deck/token starting position, another list of frames for the positions in which they can be moved, and a list of rules to be enforced; in this case, you can specify one or more keywords from this list:

MAX1->BLOCK if the item is moved in a frame already occupied, the moving is blocked

MAX1->PUSHF if the item is moved in a frame already occupied, the occupying item is moved in the next frame in the list
MAX1->PUSHB if the item is moved in a frame already occupied, the occupying item is moved in the previous frame in the list
MAX1->FRAMEfrm if the item is moved in a frame already occupied, the occupying item is moved in the frame named frm; if you specify more than one frame, is used the first free from objects, if all of them are occupied, a random one is used
MAX1->DELET

Visual editor

You can open the Visual Editor with a click on the "Visual editor" button, or pressing F4 on the keyboard, or by a middle button (or wheel) click on the mouse, this is the main form:

The visual directives are a subset of the standard ones, and are loaded from a section of the source delimited with VISUAL / ENDVISUAL directives, for example:

```
VISUAL
ELLIPSE = 1, 0, 0, 100%, 100%, #0000FF
ENDVISUAL
```

With this script, when you press the "Visual Editor" button, the program loads the lines between VISUAL / ENDVISUAL in the visual GUI, and you can modify them, or add new directives (with the toolbox on the left of the window).

When you press the "Confirm" button, all the objects are inserted in the source, between VISUAL / ENDVISUAL, so there is a two-way interaction between source and GUI (but only in a section of the source). Non-visual directives are not allowed in this section (the program gives an error in the validation step).

If the VISUAL / ENDVISUAL section is not present, the program shows you an empty GUI (but you can add new objects) and when you return to the source, a visual section is added to the end of it.

You can see at the right of the GUI window a list of directives, that will go to the source if confirmed, that are layered from the top (first, to the rear) to the bottom (last, to the front). They can be drag and dropped across the list to change their layer position (the result is shown immediately in the main panel).

At the top right of the window there are some buttons to navigate through the deck (and add or delete cards), a checkbox to enable/disable the real-time update of the current object when you change its parameters (with F2), a combo box for choosing a label / sequence to be inserted in directives like TEXT or IMAGE and another combo box for choosing a sequence to be used with a LABELRANGE function to choose a range (the object is shown only when the item of the sequence is equal to " 1 ").

The last combo box is when you want to link the object to a frame (only frames defined within VISUAL / ENDVISUAL section are shown); these frames are shown by clicking on the "Frames" tab (all other objects are
locked); in this tab, you can also enable only a group of frames: to define a group you can create frames with a group/name syntax (for example: group1/frame1, group1/frame2, etc.). If you enable the option "Change objects' frames", when you choose a group, the program will move all the objects that has frames with compatible names to the new frames.

In the bottom left of the windows there are the controls for showing h / v rulers, a grid (with the number of horizontal and vertical steps) and snap/size to the grid, a slider for zooming in and out the card, a button "Toggle 50% " to toggle on/off 50% transparency to the current object (useful to see what lies beneath), and a button " $1: 1$ " for restoring a 100% zoom and four buttons to move the selected object in the four directions (these buttons are linked to the arrows keys on the keyboard).

In the bottom right there are nine buttons, to move the selected element to these positions. If you use the right mouse, the element instead of being moved is resized (for example, the CC button resize it to the whole card). The last two buttons, "Cx" and "xC" centers the element vertically and horizontally, respectively.

Mouse controls:

- right click (on the object and the command in the list): modify the parameters utilized for rendering the object
- double click (on the command in the list): modify properties of an object (comment, lock, group, snap to grid, and size to grid)
- use mouse wheel for zooming the card's image
- use CTRL + mouse wheel to move between cards

```
Shortcuts:
F2 modify current object
F3
Del deletes current object
CTRL+Z undo (button top-left of window)
CTRL+SHIFT+Z redo (button top-left of window)
CTRL+D duplicate the current object
CTRL+L lock the position of the current object
CTRL+U unlock the position of the current object
CTRL+H toggle 50% transparency on/off
CTRL+G toggle snap to grid
CTRL+S toggle size to grid
CTRL+T tile all the windows
CTRL+1 assign group "One" to selected object (button G1 bottom-right of window)
CTRL+2 assign group "Two" to selected object (button G1 bottom-right of window)
CTRL+3 assign group "Three" to selected object (button G1 bottom-right of window)
CTRL+SHIFT+1 assign group "One" to all the objects
CTRL+SHIFT+2 assign group "Two" to all the objects
CTRL+SHIFT+3 assign group "Three" to all the objects
CTRL+R
CTRL+UP
CTRL+DOWN
CTRL+LEFT
CTRL+RIGHT
CTRL+HOME aligns current group of objects to the center, horizontally
CTRL+END aligns current group of objects to the center, vertically
CTRL+PGUP distributes current group of objects horizontally
CTRL+PGDOWN distributes current group of objects vertically
UP move the current object up one pixel
DOWN move the current object down one pixel
LEFT
RIGHT
    modify properties of current object
    switch group of the selected object to the next (button G bottom-right of window)
    aligns current group of objects to the top
    aligns current group of objects to the bottom
    aligns current group of objects to the left
    aligns current group of objects to the right
    move the current object one pixel to the left
    move the current object one pixel to the right
```


Configuration

The "Config" button on the main window brings you to the configuration window:

Deck file location: the program can run in two modes, the default "on RAM" setting uses RAM for the card rendering, it is fast, but if you have many high-resolution cards, it can slow down the whole computer (when the RAM is full). Instead, the "on disk" setting is slower, but it can render many high-resolution cards without slowing down your PC. The same is true if you have exceptionally large decks (thousands of cards).

Validate \& Build buttons: usually "Validate" and "Build" are two distinct buttons in the main window. With this option, you can have one single button "Validate \& Build"; if you click it, the script will be first validated, and if valid, the deck will be built next.

Default for deck file's extension: with this option, you can choose the default extension between ".txt" and ".nde" (and assigning these files to the nanDECK program and open them with a double click).

Default comment char: with this option, you can choose the character used for commenting lines, and changing all of them from one to another, you can also use a custom character (instead of the default ' and ;).

Use in-line comment marked by ;;: if you enable this option, you can use a double comment char for inserting comments on the same line used for commands. For example (with the default ";" comment char):

```
CARDSIZE = 6, 9 ;; default card size
```

Editor text size: this number sets the size of the font for the editor's character (the default is 10).

Handle size (visual editor): this is the size (in pixels) of the eight white squares that you can use to resize an object in the visual editor.

Handle size (table): this is the size (in pixels) of the eight white squares that you can use to resize an object in the virtual table.

Buttons/list images in visual editor: if enabled, the buttons and the list of objects in the visual editor has an icon, depicting the related object.

BATCH directive: for security reason the BATCH directive (see page 84) must be enabled before use, selecting an option from "Disabled", "Enabled (with confirmation)", and "Enabled".

Enable Internet Explorer 11 for HTMLTEXT / HTMLFILE: as a default a program cannot use Internet Explorer features beyond version 6, until there is a specific entry in Windows' Regedit; by using this button the program writes that correct entry.

Verify: Shows the status of the previous option.

Use fast rotation library (Windows only): use an alternative rotation library that uses routines available only on Windows (when the program is executed for the first time on Wine, this option is unchecked).

Use older factor for shadows and outlines in HTML: when they were first implemented, shadows and outlines with HTMLFONT use a value for size that was not correct; now it is fixed, but if you want to use the older routines, check this option.

Enable auto-increment/auto-decrement of counters: with this option enabled, you can use numbers before or after counters to add/subtract a number from them (if before, the number is added/subtracted before using the counter, if after, the addition/subtraction occurs after having used the counter).

Use the \mathbf{N} flag with png image files: if enabled, every png image file loaded with directives ICONS (see page 125), IMAGE (see page 128), and PATTERN (see page 156) has the N flag (to use the transparency layer info).

Default ON for BASERANGE: if enabled, the default value for BASERANGE is ON instead of OFF (see page 83).

Reload last work' session at startup: with this option enabled, at the start the program loads the file(s) opened in the last session.

Check at startup for a new program version (online): with this option enabled, at the start the program checks online if a new release is available for the download and warns you in the window's title.

Check for matching parenthesis on "Validate deck": with this option enabled, the program checks if the parenthesis match in all your script.

Auto-save script on "Build deck" command: with this option enabled, the program always saves the script when you click on the "Build deck" button; the checkbox "all tabs" does the auto-save option for all the editor tabs.

Do not show script after validation: usually the program, after the validation procedure, writes the script in the lower box in the main window. With this option enabled, the script is not written (speeding up the validation process).

Write \log to file <nandeck.log>: with this option enable, you can save the program \log (all the text shown in the lower box in the main window) in a text file.

Open PDF after creation: with this option enabled, after a PDF is created, the program opens it, using the default application associated with ".pdf" extension.

Use \%TEMP\% folder for RTF/HTML work files: these directives create a temporary file, if you enable this option that file will be create in the temporary folder, if you disable this option, it will be created in the current folder. Note that if you have projects in folder linked to a cloud service (like Dropbox ${ }^{\mathrm{TM}}$) you should enable this option.

DPI = $\mathbf{7 5}$ for "Auto build" feature: if you have enabled the "Auto build" option, if this option is enabled, the preview is done at a lower resolution (useful for slow PC).

Use placeholders for missing image files: if you specify file images that does not exists, the program creates them (a random color bitmap with the name of the file repeated on it) and shows you in a window the list of the missing files.

Stop build when errors are found in the script: with this option enabled, the validate procedure is stopped when an error is found in the editor, if it is disabled, the line with errors are highlighted and the validation is completed.

Always shows hint panel: with this option enabled the bottom panel with the keyword's help is shown always, and not only when a keyword is present in the current editor line.

Use tabs in editor: if you enable this option, each tab key is converted to the specified number of spaces.
Show label/color/image preview: with this option enabled, when the caret is on a label, its content (text, color, or image) is shown in the lower part of the main window (the Default button resets the standard widths of these resizable panels).

Load font files in program's folder at start: if this option is enabled, nanDECK, when it is started, loads all the font files that are found in the same folder with its executable.

Cache images: with this option enabled, all the files loaded with an IMAGE directive are stored in RAM, for a faster reload; if you need more RAM for your deck, uncheck this option.

Create a new tab for New and Open commands: if this option is enabled, when you create a new script or load an existing one, a new editor tab is created, instead of executing that command in the existing editor tab.

Editor auto complete (based on previous lines): if this option is enabled, when you digit some characters, if an existing line is already present in the editor, that starts with these characters, is proposed as selected text.

Automatic addition of closing parenthesis: if this option is enabled, when you digit an open parenthesis (standard, square, or curly) the corresponding closing parenthesis is automatically added.

Use alternative paste mode: if you are unable to paste text in the editor, try this alternative method for the clipboard.

User alternative right-click menu: with this option enabled, the right-click on a directive line open the keyword list instead of the keyword editor (note that you can always have the non-selected option with a CTRL+right click).

Keep the states of 'link first' and 'link dis.' checkboxes: note that usually these two checkboxes are not saved between sessions (i.e., closing, and reopening nanDECK do not restore their state).

Play a sound when build is done: when the program has completed the building of a deck, the default "beep" sound is played.

Run only one instance: if enabled, the program shows you an error message when you start another instance of it.
Keep images made with IMAGECREATE: if enabled, the images made with IMAGECREATE are not deleted at the end of the build but saved for later builds.

Enable hits: if enabled, a suggestion is shown when the use of certain keywords is found.

Editor RTF: this is the path to the executable file called when you want to edit a field text in a linked file with an external RTF editor. You can also choose the default executable linked with an ".rtf" file extension.

Inkscape exe: this is the path to the executable file for Inkscape, used with the VECTOR directive (see page 181) when you want to use it for the rendering, instead of the internal engine (the default, less accurate); the checkbox is used if you have installed an old version of Inkscape.

Gswin32c.exe: this is the path to the executable file for Ghostscript, used with the directive LOADPDF (see page 148) when you want to use it for reading PDF files, instead of the internal engine (the default, less compatible).

Chrome exe: this is the path to the executable file called when you use the K flag in HTMLTEXT (see page 123).

Editor text color, Editor background color, Editor highlighter color, Editor structures color, Editor text error, Editor background error, Editor string color, Editor number color, Editor keyword color, Editor comment color, Brackets text, Brackets match: with these buttons, you can change the default colors for the editor text, background, highlighted line, lines that contain special directives, text and background for lines that contain errors, specific parts of the script and brackets (and re-setting them to the default values by pressing the Default button), you can invert them with the Reverse button.

Copy to BGG: you can change the default color for copying the current script into a post on BoardGameGeek's forums.

Save keys: the program saves a "keys.txt" file, that contains the shortcuts for several actions, if you want to change them modify this file (with an editor) and restart nanDECK.

Test keys: This command is useful when you want to know the code of a particular key combination, to be used for the above feature.

Compare decks

When you have loaded more than one deck (adding another tab with CTRL+N) you can view them side to side by clicking on the "Comp" button in the right side of the main window:

Clill Compare decks

You can browse the decks with the arrow buttons (linked by default, but you can remove this feature with the "Linked" checkbox) and you can zoom in or out with the two buttons "+" and "-".

Shortcuts

At the start, nanDECK reads a shortcuts.txt file from the same folder, and creates shortcuts for every line read (or combinations of lines). You can recall these clips of text with combinations of keys like Ctrl + Alt + letter or Ctrl + Alt + Shift + letter. The lines associated with the letter character, lower of uppercase, (identified before a ":" colon) are inserted in the main editor (in the current edit position).

For example, if you have this shortcuts.txt file (created with Notepad or another text editor):

```
r:RECTANGLE = 1, 0, 0, 100%, 100%, #0000FF
T:FONT = ARIAL, 32, , #000000
TEXT = 1, "Test", 0, 0, 100%, 100%
```

You can press $\mathbf{C t r l}+\mathbf{A l t}+\mathbf{r}$ for the RECTANGLE line or $\mathbf{C t r l}+\mathbf{A l t}+\mathbf{S h i f t}+\mathbf{t}$ for the FONT + TEXT lines.

F.A.Q.

1) When must I use quotes (")?

This program uses an interpreter for the evaluation of all parameters, this code separates them using commas (,). So, if a parameter has a comma in it, you must enclose the parameter in quotes. Otherwise, if a parameter has no commas, the quotes are optional (the program will accept the parameter with or without quote), but for some parameter quotes are an error (for numeric parameters, for example).

Correct examples:

```
IMAGE = "1-10", "c:\my images\earth.jpg", 0, 0, 6, 9, 0
IMAGE = 1-10, c:\my images\earth.jpg, 0, 0, 6, 9, 0
TEXT = 1-10, "This, is a test", 0, 0, 6, 9
```

Note: quotes in ranges are not needed.
Wrong example:

TEXT $=1-10$, This, is a test, $0,0,6,9$
The $2^{\text {nd }}$ parameter will be split into "This" for $2^{\text {nd }}$ parameter and "is a test" for $3^{\text {rd }}$.

2) How can I insert quotes (or another character) in a text?

You can use $\backslash \mathbf{n} \backslash$ syntax to insert a character in a text, with \mathbf{n} being the ASCII code of that character, for example, if you want to enclose a text in quotes (ASCII 34) or add a new line (ASCII 13):

```
FONT = Arial, 32, , #000000
TEXT = 1, "I say \34\Hello\34\", 0, 0, 6, 9, center, center
```

Note that $\backslash \mathbf{1 3} \backslash$ works with TEXT directive, instead with HTMLTEXT you must use the HTML tag $<\mathbf{b r}>$.

3) Why this program uses so much memory?

This program has two settings for storing cards during creation: RAM or disk. The default setting is in RAM, and you can change that in the "Config" window, remember that RAM is faster (and you can run multiple instances of the program) but the computer may slow down when it starts using swap space; on disk is slower (and you can't run multiple instances) but the speed remains the same even with very large decks (or higher DPI settings).

4) Why there is option (X) if you can use (Y)?

When writing this program, I tried to maintain backward compatibility with previous version, so you can do the same thing in more than one way. For example: WWTOP option for vertical alignment in TEXT command is equal to CENTER, for backward compatibility.

5) There is a Linux version?

No, but if you install Wine, you can run the same nanDECK version for Windows on your Linux, with all the major features; also, if you want better compatibility, you can download and install the "Microsoft core fonts".

Wine	$\underline{\mathrm{http}: / / w w w . w i n e h q . o r g / ~}$
Microsoft core fonts	$\underline{\mathrm{http}: / / \text { sourceforge.net/projects/corefonts/files/the\%20fonts/ }}$

Note: with a recent update, nanDECK uses a DLL (FONTSUB.DLL) that is not present in every distribution, if this is the case the program will not start, you must download a zip that includes this file from here:
http://www.nand.it/nandeck/nandeck_wine.zip

6) There is a Mac version?

No, but if you install Winebottler (and XQuartz) you can run the same nanDECK version for Windows on your OSX, with all the major features. You can also use an emulator like Virtual Box (free) or Parallels (commercial software).

Winebottler http://winebottler.kronenberg.org/
XQuartz
http://xquartz.macosforge.org/
Note: with a recent update, nanDECK uses a DLL (FONTSUB.DLL) that is not present in every distribution, if this is the case the program will not start, you must download a zip that includes this file from here:
http://www.nand.it/nandeck/nandeck_wine.zip

Directives

BACKGROUND

This directive draws an image using gradients created from colors read from rectangular or circular areas (specified by frames, see page 45). For this directive you can use frames defined with the standard syntax, or use this special syntax:
$<$ frame $>=\mathrm{x}$, y , width, height, special
The special parameter can be composed of one or more colors, defined with one of these syntaxes:
\#000000 is a color,
$\# \mathbf{0 0 0 0 0 0 \%} \mathbf{A}$ is a color where \mathbf{A} is the \% distance from the original frame,
$\# \mathbf{0 0 0 0 0 0 \%} \mathbf{A} \mathbf{\$ B}$ is a color where \mathbf{A} is the $\%$ distance from the original frame and \mathbf{B} is a factor used to calculate the weight of this color.
If you add a @ symbol to the end of the special parameter the color changes will be made from a circular shape rather than a rectangular one. If you add a $!$ symbol to the start of the special parameter the background is drawn also inside this shape.

Syntax:
BACKGROUND = "range", pos x, pos y, width, height, frames, flags, width, red, green, blue
"range": a set of cards
pos x : horizontal position (in cm)
pos y: vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm)
frames: the name of the frame(s) used for reading the colors
flags: one or more of the following flags:
E the distances are measured using an "Euclidean" formula (square root and powers), this is the default
M the distances are measured using a "Manhattan" formula (absolutes differences)
S the variation specified with red/green/blue parameters is applied when there are more than half distances between the frames that are greater than the parameter distance
I the color variation specified with red/green/blue parameters is applied when there are less than half distances between the frames that are greater than the parameter distance
$\mathrm{N} \quad$ the color variation specified with red/green/blue parameters is applied when the number of distances between the frames that are greater than the parameter distance is an even number
O the color variation specified with red/green/blue parameters is applied when the number of distances between the frames that are greater than the parameter distance is an even number
distance: the distance used with flags $\mathrm{S}, \mathrm{I}, \mathrm{N}$, and O
red: the variation (positive or negative) of the red component used with flags $\mathrm{S}, \mathrm{I}, \mathrm{N}$, and O
green: the variation (positive or negative) of the green component used with flags $\mathrm{S}, \mathrm{I}, \mathrm{N}$, and O
blue: the variation (positive or negative) of the blue component used with flags $\mathrm{S}, \mathrm{I}, \mathrm{N}$, and O

BASERANGE

For each card in a range an element is extracted from a sequence, and as a default the first element from the sequence is paired from the first card in the range. The only exception is when you have a LABELRANGE function (see page 37): in this case, the $\mathrm{n}^{\text {th }}$ element from the sequence is paired with the $\mathrm{n}^{\text {th }}$ card from the deck. With this directive, you can change this behavior.

Syntax:
BASERANGE = "range", switch
Parameters:
"range": a range of cards
switch: values accepted are:
ON the $n^{\text {th }}$ element from the sequence is paired with the $\mathrm{n}^{\text {th }}$ card from the deck
OFF the $\mathrm{n}^{\text {th }}$ element from the sequence is paired with the $\mathrm{n}^{\text {th }}$ card from the range

BATCH

This directive executes an external batch script (a text file with a ".bat." extension). For security reasons, you must enable the relative option in the Configuration form: here you can choose between "Disabled", "Enabled (with confirmation)", and "Enabled". The batch file is called with these parameters:
\%1 the current card's number
$\% 2$ the total number of cards in the deck
$\% 3$ the name of the script
Syntax:
BATCH = "batch file", flags
Parameters:
"batch file": path and name for a batch file
flags: one or more of the following flags:
V the batch is executed at the validation step (the default, if not specified)
S the batch is executed at the start of the build step
C the batch is executed at the end of each built card
E the batch is executed at the end of the build step
Example:
BATCH $=$ "c:\bat\copy_files.bat"

BEZIER

This directive draws a Bezier curve from a starting point ($\mathrm{x} 1, \mathrm{y} 1$) to an ending point (x 2 , y 2), using two "handles" (h 1 and h2).

Syntax:
BEZIER = "range", pos x 1 , pos y 1 , handle x 1 , handle y 1 , handle x 2 , handle y 2 , pos x 2 , pos y 2 , html color, thickness, end arrow, start arrow, end angle, start angle

Parameters:
"range": a set of cards
pos $\mathbf{x 1}, \operatorname{pos} \mathbf{y} 1$: coordinates of starting point (in cm)
handle $\mathbf{x 1}$, handle $\mathbf{y} 1$: coordinates of handle for starting point (in cm)
handle $\mathbf{x 2}$, handle $\mathbf{y} 2$: coordinates of handle for ending point (in cm)
$\operatorname{pos} \mathbf{x 2}, \operatorname{pos} \mathbf{y} \mathbf{2}$: coordinates of ending point (in cm)
html color: color of the curve, in the same format used for HTML, you can also specify a gradient
thickness: thickness of the curve (in cm), if omitted, the curve is 1 pixel wide
end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the curve
start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the curve
end angle: the angle (in degrees) of the spokes of the arrow at the end of the curve
start angle: the angle (in degrees) of the spokes of the arrow at the start of the curve
Note: if end/start angle is negative, the arrow is drawn as a full triangle (with three lines instead of two).
Example:

```
BEZIER = 1, 1.5, 0, 1.5, 4.5, 4.5, 4.5, 4.5, 9, #0000FF, 0.15
BEZIER = 1, 4.5, 0, 4.5, 4.5, 1.5, 4.5, 1.5, 9, #0000FF, 0.15
BEZIER = 1, 0, 3, 3, 3, 3, 6, 6, 6, #FF0000, 0.15
BEZIER = 1, 0, 6, 3, 6, 3, 3, 6, 3, #FFO000, 0.15
Result: Figure 11
```


Figure 11

BEZIERS

This directive draws a Bezier curve from a starting point (from the last BEZIERS directive) to an ending point (x, y), using two "handles" (one from the last directive and one from parameter h). The first directive sets only the starting point, for each subsequent directive a curve is drawn (the starting point for the next curve is the ending point of the last). For restarting the process, you can specify a BEZIERS with only the range parameter.

Syntax:
BEZIERS $=$ "range", pos x, pos y, handle x, handle y, html color, thickness, end arrow, start arrow, end angle, start angle

Parameters:
"range": a set of cards
pos \boldsymbol{x}, pos \boldsymbol{y} : coordinates of starting/ending point (in cm)
handle \boldsymbol{x}, handle \boldsymbol{y} : coordinates of handle for starting/ending point (in cm)
html color: color of the curve, in the same format used for HTML, you can also specify a gradient
thickness: thickness of the curve (in cm), if omitted, the curve is 1 pixel wide
end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the curve
start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the curve
end angle: the angle (in degrees) of the spokes of the arrow at the end of the curve
start angle: the angle (in degrees) of the spokes of the arrow at the start of the curve
Note: if end/start angle is negative, the arrow is drawn closed (with three lines).
Example:

```
BEZIERS = 1, 0, 0, 3, 0, #000000, 0.1
```

BEZIERS $=1,0,3,3,3, \# F F 0000,0.1,0.5$
BEZIERS $=1,0,6,3,6, \# 00 F F O 0,0.1,0.5$
BEZIERS $=1,0,9,3,9, \# 0000 \mathrm{FF}, 0.1,0.5$
Result: Figure 12

BLEED

This directive fills the space beyond a rectangle with the colors from the border of the rectangle, if

Figure 12 you do not specify the size of the outer rectangle, this directive fills the whole card.

Syntax:
BLEED $=$ "range", pos $\mathrm{x} 1, \operatorname{pos} \mathrm{y} 1$, width1, height1, pos_x2, pos_y2, width2, height2
Parameters:
"range": a set of cards
pos x1: horizontal position (in cm)
pos y1: vertical position (in cm)
width1: width of the rectangle (in cm)
height1: height of the rectangle (in cm)
$\boldsymbol{p o s} \boldsymbol{x} 2$: horizontal position (in cm) of the outer rectangle
pos \boldsymbol{y} 2: vertical position (in cm) of the outer rectangle
width2: width of the outer rectangle (in cm)
height2: height of the outer rectangle (in cm)
Examples:

```
BLEED = "1-10", 1, 1, 4, 7
BLEED = "1-10", 1, 1, 4, 7, 0.5, 0.5, 5, 6
```


BOOKMARK

This directive adds the referred bookmark (from 0 to 9) to the current line in the editor (or another, if the offset parameter is specified, positive toward the end, negative toward the start). Note that you can go to a bookmark line with CTRL+(0..9).

Syntax:
BOOKMARK $=$ number, offset
Parameters:
number: the number of the bookmark, from 0 to 9
offset: this value is added to the current line in the editor
These bookmarks are automatically added in the validation step at the $1^{\text {st }}$ instance of each directive:

```
#1 PAGE
#2 CARDSIZE
#3 LINK
#4 VISUAL
```


BORDER

This directive draws a border around all the cards

Syntax:
BORDER $=$ type, html color, thickness, guidelines, guide color, mark/cross size, hor. guide offset, ver. guide offset, num. of guides, hor. gap offset, ver. gap offset

Parameters:
type: the type of border can be chosen between:
RECTANGLE draws a rectangle (the default)
ROUNDED draws a rectangle with rounded corners
MARK draws cut marks (the length is set with the $6^{\text {th }}$ parameter
NONE no border
$\boldsymbol{h t m l}$ color: color of the border, in the same format used for HTML, black if not specified

Note: if you want a different border color on each card, use instead RECTANGLE or ROUNDRECT

thickness: thickness of the border (in cm), if omitted, it is 1 pixel wide

Note: the thickness of the border is measured on two cards; if you use a thickness of 1 cm , for example, on each card the border is 0.5 cm wide.
guidelines: this is for drawing lines beyond the card's boundaries (over the page's margins). You can choose between:

```
NONE no guidelines (the default)
SOLID solid lines
DOTTED dotted lines
DASHED dashed lines
MARK draws cut marks only (solid lines)
MARKDOT draws cut marks only (dotted lines)
MARKDASH draws cut marks only (dashed lines)
CROSS draws cut marks and crosses (solid lines, the length is set with the 6 th parameter)
CROSSDOT draws cut marks and crosses (dotted lines, the length is set with the 6 }\mp@subsup{6}{}{\mathrm{ th }}\mathrm{ parameter)
CROSSDASH draws cut marks and crosses (dashed lines, the length is set with the 6 th parameter)
```

guide color: color of the guidelines, in the same format used for HTML, black if not specified
mark size: length of the cut marks (in cm) for MARK border type, and length of the arm of the cross (in cm) for CROSS/CROSSDOT/CROSSDASH guideline type
hor. guide offset: horizontal guides are displaced of an offset (in cm), zero if not specified
ver. guide offset: vertical guides are displaced of an offset (in cm), equal to horizontal offset if not specified
num. of guides: number of guides drawn (0 means a single line)
hor. gap offset: a gap in horizontal marks (in cm), if zero (or not specified) the mark starts at the cards
ver. gap offset: a gap in vertical marks (in cm), if zero (or not specified) the mark starts at the cards
Examples:

```
BORDER = RECTANGLE
```

BORDER = ROUNDED, \#0000FF, 0.5

BRUSH

This directive changes the style used for filling the shapes in these directives:

```
CIRCLE
ELLIPSE
FILL
HEXGRID
PIE
POLYGON
RECTANGLE
RHOMBUS
ROUNDRECT
STAR
TRIANGLE
```

Syntax:
BRUSH="range", type, "image file", width, height, flags
Parameters:
"range": a set of cards
type: you can choose a type between these options:

SOLID	draws a solid fill (the default)
DIAGLEFT	fills with lines, drawn diagonally from top right to bottom left
DIAGRIGHT	fills with lines, drawn diagonally from top left to bottom right
SQUARE	fills with squares
CROSS	fills with squares, rotated 45
HORIZONTAL	fills with lines, drawn horizontally
VERTICAL	fills with lines, drawn vertically
CUSTOM	fills with an image

"image file": the image file used for filling the shapes
width: width of the image, in cm
height: height of the image, in cm
flags: one or more of the following flags:
A absolute position of the custom bitmap (relative to the card), the default
R relative position of the custom bitmap
T use the transparent color defined with CHROMAKEY
P proportional
Examples:

```
BRUSH="1-10", SQUARE
BRUSH="1-10", CUSTOM, "dots.gif", 5%, 5%
```


BUTTON

This directive draws a 3D rectangle over a set of cards. This directive works only if you have previously drawn something in the specified area.

Syntax:
BUTTON = "range", pos $x, \operatorname{pos} y$, width, height, depth, flags

```
Parameters:
"range": a set of cards
pos x: horizontal position (in cm)
pos y: vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm}
depth: width of the 3D border
```

flags: one or more of the following flags:
I from out to in
O from in to out
G gradient effect

Example:

```
RECTANGLE = 1, 1, 1, 4, 3, #00FFFF
RECTANGLE = 1, 1, 5, 4, 3, #OOFFFF
BUTTON = 1, 1, 1, 4, 3, 0.3, I
BUTTON = 1, 1, 5, 4, 3, 0.3, 0
Result: Figure 13
```


Figure 13

CANVAS

With this directive, the program splits the canvas (card 0) onto a range of cards. The canvas' size can be decided with a CANVASSIZE directive (see page 90).

Syntax:
CANVAS = "range", flags
Parameters:
"range": a set of cards
flags: in this parameter you can specify a special behavior, possible values are:
H the canvas is horizontally centered in the cards
V the canvas is vertically centered in the cards

Tip: You can view the content of the canvas bitmap with a click on the button "Canv" (to the right of the "Card preview" button). You can reduce/enlarge it with a double-click on the image.

For example, if you must draw a large circle, to be split onto six cards, you can use the CANVASSIZE/CANVAS directives, like in this script:

```
BORDER = MARK
CANVASSIZE = 18, 18
CANVAS = 1-6
ELLIPSE = 0, 0, 0, 18, 18, #0000FF#FFO000@360
FONT = Arial, 48, , #000000
TEXT= 1-9, {§}, 0, 0, 2, 2, CENTER, CENTER
```

This is the resulting printed page (I have added a number in the top-left corner of each card for helping identify them):

CANVASSIZE

This directive sets the size of the canvas (card number 0). If omitted, is $6 \mathrm{~cm} \times 9 \mathrm{~cm}$. The card 0 is a card that isn't printed with the deck, is can have a different size than the standard card and can be used in two ways: as a drawing board to realize special effects, and to draw a larger card that must be split onto several standard cards, using the CANVAS directive (see page 89).

Syntax:
CANVASSIZE $=$ width, height
Example:
CANVASSIZE = 12, 18

CANVASWORK

This directive tells the program to draw the canvas (card 0) after drawing the range of cards specified in the parameter.
Syntax:
CANVASWORK = "range"
Parameters:
"range": a set of cards

CARDS

This directive can be used to specify the total number of cards that compose the current deck.

Syntax:

CARDS $=$ number
This directive is somehow obsolete, if you do not specify it, the total number of cards is deducted from the other directives. For example, in that script the total number of cards is set to 20 :

RECTANGLE $=$ "1-5,15-20", 0, 0, 6, 9, \#00FF00
But, if you also specify a CARDS directive, the cards' number is forced. For example, in that script the total number of cards is set to 15 (and the extra cards specified in RECTANGLE are ignored):

CARDS $=15$
RECTANGLE $=$ "1-5,15-20", 0, 0, 6, 9, \#00FF00

CARDSIZE

This directive sets the size of cards (in cm). If omitted, is $6 \mathrm{~cm} \times 9 \mathrm{~cm}$.

Syntax:
CARDSIZE $=$ width, height
Examples:
CARDSIZE = 5, 10
CARDSIZE $=2.5,2.5$

CASE

This directive is used in a structure SELECT...ENDSELECT to specify a code that must be executed when the value in the SELECT is equal to a specific value (see page 167).

Syntax:
CASE $=$ value

Parameters:
value: a string, number, label, or expression that can be evaluated

CASEELSE

This directive is used in a structure SELECT...ENDSELECT to specify a code that must be executed only if all the CASEs directives are not executed (see page 167).

Syntax:

CASEELSE

Parameters:

None

CHROMAKEY

This directive sets the color to be treated as transparent during image loading (with IMAGE directive, see page 128). The default transparent color, if CHROMAKEY was not used, is the color in the top-left pixel of the image.

Syntax:
CHROMAKEY $=\mathrm{html}$ color \mid corner type, level
Parameters:
corner type: the color will be picked from one of the four corners, or from the center of the image, or this option can be deactivated:

TOPLEFT
TOPRIGHT
BOTTOMLEFT
BOTTOMRIGHT
CENTER
NULL
level: if specified, are treated as transparent also the colors within a level of difference from the base transparent color (calculated as a distance in CIELab space).

Examples:
CHROMAKEY = \#FFFFFF

CHROMAKEY = TOPLEFT

CIRCLE

This directive draws a circle in a set of cards.
Syntax:
CIRCLE = "range", pos x, pos y , width, height, html color, html color, thickness
Parameters:
"range": a set of cards
$\boldsymbol{p o s} \mathbf{x}$: horizontal position (in cm)
$\boldsymbol{p o s} \mathbf{y}$: vertical position (in cm)
width: width of the circle (in cm)
height: height of the circle (in cm)
html color: border color of the circle, in the same format used for HTML, you can also specify a gradient
html color: inner color of the circle, in the same format used for HTML, if not specified the inner color is the same of border color. You can also specify "EMPTY" for a hollow circle or a gradient
thickness: thickness of the border of the circle (in cm), if omitted, the circle's border is 1 pixel wide

Examples:

```
CIRCLE = 1, 1, 1, 4, 7, #00FFO0
Result: Figure 14
CIRCLE = 1, 1, 1, 4, 7, #FFOOFF, EMPTY, 0.1
Result: Figure 15
ELLIPSE = 1, 1, 1, 4, 7, #FF0000#0000FF@90
Result : Figure 16
```


Figure 14

Figure 15

Figure 16

CMYK

This directive modifies the color space of JPG/JPEG images saved with a SAVE directive (see page 164).
Syntax:
CMYK = "range", switch, color profile
Parameters:
"range": a set of cards
The \boldsymbol{s} witch parameter can be set equal to:
ON to use the CMYK color space when a JPG/JPEG file format is specified

If the former switch is ON, it can also be specified an optional color profile parameter, that can be an ICC/ICM file, or a JPG/JPEG (from which a color profile is extracted).

COLOR

This directive modifies the colors, brightness, contrast, and saturation of images (and text) being rendered on a range of cards. See directives IMAGE (page 128), ICONS (page 125), PATTERN (page 155) and TEXT (page 173).

Syntax:
COLOR = "range", html color, bri-con-sat
Parameters:
"range": a set of cards
html color: color used for rendering the image, in the same format used for HTML. If you want to maintain the original colors, you must use a median gray (\#808080)
bri-con-sat: a triplet of brightness, contrast, and saturation value, used for rendering the image, written in hexadecimal format (like an html color), starting with an ampersand (\&) character. If you want to maintain some of the original values, use the median value (hexadecimal 80). If this parameter is omitted, are used three neutral values ($\& 808080$)

Figure 17

Figure 18

COLORCHANGE

This directive changes one color into another, in a rectangle area of a range of cards.
Syntax:
COLORCHANGE = "range", pos x , pos y , width, height, html color source, html color destination, level, flags, "mask file", schema, corner rounding

Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm)
html color source: a color value, in HTML format
html color destination: a color value, in HTML format
level: if zero, the source color is exactly the one specified in the $6^{\text {th }}$ parameter, otherwise are taken also colors that differ from that source a value equal this parameter in one, two, or three RGB components; with B flag, is the number of times the blur routine is applied
flags: one or more of the following flags:
S the replaced color is always the same (default)
V the replaced color changes, depending from the original one
B instead of changing colors, the selected rectangle is blurred
I instead of changing colors, the selected rectangle is inverted
A you can specify more than one change, as sequences of sources and destinations
"mask file": the transparency layer of this image is used to determine where to apply the color change and the blur effect
schema: this is a matrix of 5×5 numbers, used as factors to change the weight of each pixel, when the average is calculated for the blur, for example 0111001210023200121001110
corner rounding: if specified, it is the radius (in cm) of the rounded corners of the area where the effect is applied

COLORS

This directive writes from one to four colors into as many variables, that can be used instead of a color value.
Syntax:
COLORS $=$ "range", html color 1, html color 2 , html color 3 , html color 4, html color 5
Parameters:
"range": a set of cards
html color1: a color value, in HTML format, that is stored into variable \#ZZZZZZ
html color2: a color value, in HTML format, that is stored into variable \#YYYYYY
html color3: a color value, in HTML format, that is stored into variable \# XXXXXX
html color4: a color value, in HTML format, that is stored into variable \#WWWWWW
html color 5: a color value, in HTML format, that is stored into variable \#VVVVVV

Instead of a color, you can use another variable, or the syntax \#XçY to read a color located at position X, Y of the current card (you can use also \% with each value, for example: \#50\%ç50\%).

With the syntax \#X1çY1çX2çY2 you can read the most used color in an image, (the image starts from X1, Y1 and end to $\mathrm{X} 2, \mathrm{Y} 2$).

With the syntax \#X1çY1çX2çY2çMinçMax you can read the most used color in an image, (the image starts from X1, Y1 and end to X2, Y2), excluding colors with percent brightness lower than Min and higher than Max.

With the syntax \#AAAAAA>\#BBBBBB<\#CCCCCC you can select between two colors: if the brightness of color \#A is more or equal to 50%, the variable is set to color $\# \mathrm{~B}$, if the brightness is less than 50%, the variable is set to color \#C. This condition can be modified by using the syntax \#AAAAAA>\#BBBBBB<\#CCCCCC\$Xnumber, where number is a $\%$ value, and \mathbf{X} is a character from this list:

R Red component
G Green component
B Blue component
H Hue value
S Saturation value

Every color can be also modified adding a value for saturation and a value for brightness change (in percent), with the syntax $\# 000000+$ saturation+brightness (the values for saturation and brightness can also be negatives).

Example:

```
COLORS = 1, #FFO000
COLORS = 2, #OOFFOO
COLORS = 3, #0000FF
RECTANGLE = 1-3, 0, 0, 100%, 100%, #ZZZZZZ
```


COMMENT

This directive sets the character used for comments, and eventually activate the in-line comments. The utilization of this directive is equivalent to the settings in the "Config" section of the program.

Syntax:
COMMENT = character, INLINE
Parameters:
character: the character used for comments, it must be the first character of the line
INLINE: the same character (doubled) will be used for in-line comments
Examples:

```
COMMENT = &
& This is a comment
COMMENT = !, INLINE
RECTANGLE=1, 0, 0, 6, 9, #00FF00 !! This is another comment
```


COMPARE

This directive compares the cards built with the current script with those built with the filename specified as a parameter and creates a range (to be used with PRINT=COMPARE) with only the cards which are different.

Syntax:
COMPARE $=$ "filename"
Parameter:
"filename": the filename to be compared with the current script
Example:

```
COMPARE="script_verl.txt"
```

PRINT=COMPARE

COPY

This directive does a copy-and-paste of a section of a card into another position on the same card. If you want to copy a section of a card onto another card, you must use the SAVE and IMAGE directives (see page 164).

Syntax:
COPY $=$ "range", $\operatorname{pos} \mathrm{x} 1$, pos y 1 , width1, height1, $\operatorname{pos} \mathrm{x} 2$, $\operatorname{pos} \mathrm{y} 2$, width2, height 2 , angle, flags

Parameters:
"range": a set of cards
pos x1: starting horizontal position (in cm) of the image
pos y1: starting vertical position (in cm) of the image
width1: starting width of the image (in cm)
height1: starting height of the image (in cm)
pos $\mathbf{x 2}$: ending horizontal position (in cm) of the image
pos y2: ending vertical position (in cm) of the image
width2: ending width of the image (in cm)
height2: ending height of the image (in cm)
angle: angle of image rotation, can be 0 for no rotation
flags: in this parameter, you can specify a special behavior for the image, possible values are:

H Horizontal mirror
 V Vertical mirror

Example:

```
IMAGE = 1, " c:\images\earth.jpg", 0, 0, 3, 3.5, 0, P
FONT = Arial, 16, , #FFFFFF, #00000
TEXT = 1, "Earth", 0, 3.5, 3, 1, CENTER, CENTER
COPY = 1, 0, 0, 3, 4.5, 3, 0, 3, 4.5, 0, H
COPY = 1, 0, 0, 3, 4.5, 0, 4.5, 3, 4.5, 0, V
COPY = 1, 0, 0, 3, 4.5, 3, 4.5, 3, 4.5, 0, HV
Result: Figure 19
```


Figure 19

COPYCARD

This directive duplicates cards from a source range to a destination range. Both source and destination ranges can be single cards.

Syntax:
COPYCARD = "destination range", "source range", flags
Parameters:
"destination range": a set of cards
"source range": a set of cards
flags: one or more of the following flags:
F rotate the cards upside down
Example:
COPYCARD = "5-8", "1-2"

This is the deck, before the directive:

CARD 1
CARD 2
CARD 3
CARD 4
This is the deck, after the directive:
CARD 1
CARD 2
CARD 3
CARD 4
CARD 1
CARD 2
CARD 1
CARD 2

CORRECTION

This directive enables/disables the pixel correction. If enabled, one pixel is added to width and heights of ELLIPSE, RECTANGLE, ROUNDRECT, and RHOMBUS directives. The correction default is ON.

Syntax:
CORRECTION = "range", switch
Parameters:
"range": a range of cards
switch: values accepted are:
ON Pixel correction enabled
OFF Pixel correction disabled
Example:
CORRECTION $=1$, OFF

COUNTER

This directive sets a counter to a value. A counter is a variable that can be used in expressions (see page 58). This directive can be used with a dice (see DICE directive, page 98) to revert it into a counter. Note: after the build, a warning is issued if one counter is used in an expression without being initialized.

Syntax:
COUNTER = "range", counter name, counter value, counter inc, counter limit
Parameters:
"range": a set of cards
counter name: a counter letter(s)
counter value: a value, it can be a fixed number or an expression
counter inc: each time the counter is used, is incremented of this value (or decremented, if negative)
counter limit: if the value of the counter is higher of this value, the counter is reset at the starting value
Valid counters for integer values:

A B C D E F G H I J
Valid counters for floating values:
AA BB CC DD EE FF GG HH II JJ
Examples:
COUNTER = "1", A, 100

COUNTER = "1-10", B, 2D6

DECK

This directive prepares a deck of cards to be used in the "Virtual table" option (see page 69). If you do not use this directive, the program prepares a deck to be used in the virtual table with all the cards.

Syntax:

DECK = "range", "deck name", html color, height, flag, back range, pos x, pos y, starting frames, frames, rules
Parameters:
"range": a set of cards
"deck name": the name of the deck
html color: deck color in the same format used for HTML
height: height of the deck (in pixels), you can also specify a $\%$ of the screen's height. The deck's width is proportional to the height
flag: you can specify these options:
$\mathrm{R} \quad$ the deck is shuffled (the default)
N the deck is not shuffled (the order of the cards is that one specified in "range" parameter)
back range: if you specify a number for this parameter, for the deck image (back of cards) is used that card (taken from the deck) instead of a color. You can also use a range of cards for this parameter
$\boldsymbol{p o s} \boldsymbol{x}$: horizontal position for the deck (in pixels), you can also specify a $\%$ of the screen's width
pos \boldsymbol{y} : vertical position for the deck (in pixels), you can also specify a $\%$ of the screen's height
starting frames: if specified, the deck is placed in a frame randomly taken from this list
frames: when a card from this deck is moved on the table, it is positioned in the nearest frame from this list
rules: when a card from this deck is moved on the table, are enforced the rules specified in this list (see page 69 for a list of rules)

Note: the DECK directive is not compatible with the DUPLEX directive, do not use both in the same script.

Example:
DECK = 1-13, "Hearts", \#FF0000, 50\%

DEPTH

This directive changes the number of bitplanes (and therefore the maximum number of colors) used in storing the cards' images, so you can use less RAM and can manage more cards.

Syntax:
DEPTH = "range", bitplanes
Parameters:
"range": a set of cards
The bitplanes parameter can be set equal to:
$24 \quad 16$ million of colors (the default)
$16 \quad 65536$ colors
$8 \quad 256$ colors
$4 \quad 16$ colors

DICE

This directive converts one counter into a dice (it can be used later in expressions).
Syntax:
DICE $=$ "range", counter, "dice range", dice number, flags, default1, default2, reroll
Parameters:
"range": a set of cards
counter name: valid counters are:
A B C D E F G H I J
"dice range": a range of values, from which is taken the result of the dice roll; if a " \gg " is added, the result adds another roll; if a " \ll " is added, the result subtracts another roll; if a "***" is added, the result is rerolled
dice number: the number of dice rolled
flags: the syntax for this parameter is $f n g$, where f is the flag that specify how the dice are grouped, n is a number that specify how much dice are used, and g is the flag that specify how the dice to be grouped are chosen from the main pool

The $1^{\text {st }}$ flag can be chosen between:
$+\quad$ sum (the default, if not specified)

* multiply
- subtract
\# absolute value after subtracting
£ concatenate
$\wedge \quad$ concatenate without duplicates
The $2^{\text {nd }}$ flag can be chosen between:
$+\quad$ upper dice (the default, if not specified)
- lower dice
default1: the value to be used if the number before the dice is missing
default2: the value to be used if the number after the dice is missing
reroll: the times the dice are rerolled if the result is marked with "**"
Example, rolling four dice (with values from one to six) and sum the upper three:

```
DICE = 1, A, "1-6", 4, +3+
```

Example, rolling four open dice (subtracting dice for one, adding dice for six):
DICE = 1, A, " $1 \ll, 2,3,4,5,6 \gg ", 4$
Example, rolling four dice, and rerolling them three times when the result is "-1":

```
DICE = 1, A, "-1**,-1**,0,0,1,1", 4, , , ,3
```


DISPLAY

This directive draws a list of cards to the canvas (card 0), resizing it accordingly, and save it with a filename (if specified). If the range is omitted, all the deck is drawn and saved. The width parameter is the number of cards in horizontal, if omitted, is chosen the maximum number from the factors of the total number of the cards. Note that if there are N cards, and N is a prime number, the default result will be a line of N cards (since the only other number that is a divisor of a prime number is one); in this case you can specify a different width, and the last cards would be filled with blanks. Instead of specifying starting and ending card, you can use a range as 5th parameter (leave the other at zero).
If you specify a filename with a question mark (?) as a first character, the program asks you if the existing file must be overwritten. If you specify the keywords ($\mathbf{R 9 0}$), ($\mathbf{R 1 8 0}$), or ($\mathbf{R 2 7 0}$) at the start of the filename, the resulting image is rotated accordingly.

Syntax:
DISPLAY = "image file", first card, last card, width, "range", transparent color, "mask file", bitplanes, pos x, pos y, width, height

Parameters:
"image file": the name of the saved file
first card: the first card drawn in the file
last card: the last card drawn in the file
width: the width (in cards) of the rectangle, you can also specify a height with the syntax widthxheight, in this case multiple files can be created (replacing a § symbol with a counter, and the \# symbol with the number of cards in current image file)
"range": the set of cards drawn in the file
transparent color: for PNG and GIF, if this parameter is specified, the file is saved with this color as transparent, for PNG files you can also specify more than one color (for example \#0000FF\#00FF00 for two colors) and add a level of transparency, in the format \#xxyyyyyy, where $\mathrm{xx}=$ transparency level (from $00=$ full transparent to $\mathrm{FF}=$ full solid) and yyyyyy = color. Another format accepted is \#xxyyyyyyzzz, where zzz is a number that is used as "likeness" of the color to be treated as transparent. Finally, you can also specify a G at the end to proportionally adjust the level of transparency to the level of likeness.
"mask file": if this parameter is specified (a PNG image), is used as transparency mask for the saved image (note that in this case the "transparent color" is not used)
bitplanes: sets the depth of the saved image, and can be set equal to:

24	16 million of colors (the default)
16	65536 colors
8	256 colors
4	16 colors

pos \boldsymbol{x} : horizontal position of the saved area (in cm)
pos \boldsymbol{y} : vertical position of the saved area (in cm)
width: width of the saved area (in cm)
height: height of the saved area (in cm)
Example:
DISPLAY = "C:\deck.png", 1, 10

DOWNLOAD

This directive downloads a file from Internet if the file does not already exist in the specified path.
Syntax:
DOWNLOAD = URL, "filename"
Parameters:
URL: the URL for a file, it must start with http:// or https://
"filename": the path and filename for the downloaded file, if omitted, the path is the current folder, and the name is taken from the URL parameter.

Example:
DOWNLOAD = http://game-icons.net/icons/delapouite/originals/png/sheep.png
You can also use two sequences, one for the URLs and one for the filenames.

DPI

This directive sets the resolution of cards (in Dots Per Inch). If omitted, is 300 (the default for printing); if you want to show the cards on screen, you can use a value of 150 .

Syntax:
DPI $=$ dpi number
Note that with a value too high, the time of rendering can be exceptionally long, and the program uses more memory (or disk space).

Example:
DPI $=150$

DRAW

This directive draws several cards from a deck in the "Virtual table" option (see page 69). If you do not use this directive, the program prepares a deck to be used in the virtual table with all the cards. If you specify a new name, a deck is created with the card drawn, if you leave the $2^{\text {nd }}$ parameter empty, the cards drawn are shown into the table as separated objects.

Syntax:
DRAW = "deck name", "deck name new", number, flag, pos x, pos y, starting frames
Parameters:
"deck name": the name of the deck from which the cards are drawn
"deck name new": the name of the deck created with the cards drawn
number: the number of cards drawn
flag: you can specify these options:
U the cards are drawn face up
D the cards are drawn face down (the default)
$\boldsymbol{p o s} \boldsymbol{x}$: horizontal position for the cards/deck drawn (in pixels), you can also specify a $\%$ of the screen's width
pos \boldsymbol{y} : vertical position for the cards/deck drawn (in pixels), you can also specify a $\%$ of the screen's height
starting frames: if specified, the cards drawn are placed in frames randomly taken from this list
Example:
DRAW = "standard", "new", 10, U

DUPLEX

This directive copies a card (or a range of cards) to another position (or range) calculated automatically by the software, it is useful to manage duplicates or synchronize the front and back of cards for a duplex printing. You can also specify multiple ranges in $1^{\text {st }}$ and $2^{\text {nd }}$ parameter as sequences of ranges. See also PRINT directive (see page 159).

Syntax:
DUPLEX = "range front", "range back", number
Parameters:
"range front": a card or a range of card to be copied
"range back": a card or a range of card to be copied, front-to-back with the card(s) specified in the $1^{\text {st }}$ parameter
number: if specified, the card is replicated several times; if not specified, it is treated like one copy
Example:

```
DUPLEX = 1-10, 11
DUPLEX = 12-21, 22, 2
DUPLEX = 1-3|4-6, 7|8
```

Note: since nanDECK need to add cards to the deck, you must not use a CARDS directive in the script.

Note: the DUPLEX directive is not compatible with the DECK directive, do not use both in the same script.

EDGE

This directive changes the style used for drawing the lines / boundaries with these directives:

```
BEZIER
BEZIERS
CIRCLE
ELLIPSE
HEXGRID
LINE
LINERECT
GRID
PIE
POLYGON
RECTANGLE
RHOMBUS
```

ROUNDRECT
STAR
TRACK
TRACKRECT
TRIANGLE

Syntax:
EDGE = "range", type, pattern, tip, join
Parameters:
"range": a set of cards
type: you can choose a type between these options:

SOLID	draws a solid line (the default)
INSIDE	the same as solid, but inside the rectangle
DASH	draws a dashed line
DOT	draws a dotted line
DASHDOT	draws a line alternating a dash and a dot draws a line alternating a dash and two dots DASHDOTDOT
NULL	does not draw a border
CUSTOM	draws a line using a custom pattern

pattern: a pattern for the custom style, this pattern can be composed of:

O	dot
D	dash
S	space

These letters can be repeated, for example "OSDSOS" is a valid pattern.
tip: you can choose a pen tip between these options:

ROUND	the pen tip is a circle (the default)
SQUARE	the pen tip is a square
FLAT	the pen tip is a line

join: you can choose the method to join the lines between these options:

ROUND	the angles are rounded (the default)
BEVEL	the angles are blunted
MITER	the angles are squared

ELLIPSE

This directive draws an ellipse in a set of cards.
Syntax:
ELLIPSE = "range", pos x, pos y, width, height, html color, html color, thickness
Parameters:
"range": a set of cards
$\boldsymbol{p o s} \mathbf{x}$: horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the ellipse (in cm)
height: height of the ellipse (in cm)
html color: border color of the ellipse, in the same format used for HTML, you can also specify a gradient
html color: inner color of the ellipse, in the same format used for HTML, if not specified the inner color is the same of border color. You can also specify "EMPTY" for a hollow ellipse or a gradient
thickness: thickness of the border of the ellipse (in cm), if omitted, the ellipse's border is 1 pixel wide
Examples:

Figure 20

Figure 21

Figure 22
ELLIPSE $=1,1,1,4,7, \# 00 F F 00$
Result: Figure 20
ELLIPSE = 1, 1, 1, 4, 7, \#FFOOFF, EMPTY, 0.1
Result: Figure 21
ELLIPSE = 1, 1, 1, 4, 7, \#FF0000\#0000FF@90
Result: Figure 22

ELSE

This directive is used in a structure IF...ENDIF to specify a code that must be executed only if the test in the IF directive is not true (see page 127).

Syntax:
ELSE
Parameters:
none

ELSEIF

This directive is used in a structure IF...ENDIF to specify a code that must be executed only if the test in this line is true and the test in the first IF directive is false (see page 127).

Syntax:

ELSEIF $=$ value 1 operator value 2

Parameters:
value: a string, number, label, or expression that can be evaluated
operator: the condition is evaluated using the two values and this operator, you can use one operator from the same listed for the IF directive

END

This directive is used to close a MACRO...END structure (see page 149).
Syntax:
END
Parameters:
none

ENDFRAME

This directive closes a FRAME...ENDFRAME structure (see page 113).
Syntax:
ENDFRAME

Parameters:
none

ENDIF

This directive is used to close an IF...ENDIF structure (see page 127).
Syntax:
ENDIF
Parameters:
none

ENDIMAGEENC

This directive closes an IMAGEENC...ENDIMAGEENC structure (see page 130).
Syntax:

ENDLAYER

Parameters:
none

ENDLAYER

This directive closes a LAYER...ENDLAYER structure (see page 136).
Syntax:
ENDLAYER

Parameters:
none

ENDLINK

This directive closes a LINK...ENDLINK structure (see page 140).
Syntax:
ENDLINK

Parameters:
none

Example:

```
linkmulti=num
```

link=
num,string
1,alpha
2,beta
3, gamma
endlink
[all]="1-\{(num) \}"
font=Arial,48, \#000000
text=[all], [num], $0,0,100 \%, 50 \%$
text $=[a l l],[$ string $], 0,50 \%, 100 \%, 50 \%$

ENDSECTION

This directive closes a SECTION...ENDSECTION structure (see page 167).
Syntax:
ENDSECTION

Parameters:
none

ENDSELECT

This directive is used to close a SELECT...ENDSELECT structure (see page 167).
Syntax:
ENDSELECT

Parameters:
none

ENDSEQUENCE

This directive is used to close a SEQUENCE...ENDSEQUENCE structure (see page 168).
Syntax:
ENDSEQUENCE
Parameters:
none

ENDVISUAL

This directive closes a VISUAL...ENDVISUAL structure (see page 181).
Syntax:
ENDVISUAL
Parameters:

EXPRESSION

This directive specifies the characters used to define expressions to be evaluated in texts in HTMLTEXT (see page 123) and RTFTEXT (see page 164) directives.

Syntax:
EXPRESSION $=\exp$. HTML start, exp. HTML end, exp. RTF start, exp. RTF end

Parameters:

exp. HTML start: character(s) used to define start of expressions in HTMLTEXT directive exp. HTML end: character(s) used to define end of expressions in HTMLTEXT directive exp. RTF start: character(s) used to define start of expressions in RTFTEXT directive exp. RTF end: character(s) used to define end of expressions in RTFTEXT directive

Example:

```
EXPRESSION = {, }
```


FACTORS

This directive sets two factors used in elements printed with HTMLTEXT (see page 123).
Syntax:
FACTORS $=$ background size factor, font size factor

Parameters:

background size factor: the size of the background printed with B flag is multiplied for this value font size factor: the size of the font is multiplied for this value

Example:
FACTORS $=1.2$

FILL

This directive fills a region with a color (the region is delimited by another color).
Syntax:

FILL = "range", pos x, pos $\mathrm{y}, \mathrm{html}$ fill color, html border color, flags
Parameters:
"range": a set of cards
$\boldsymbol{p o s} \mathbf{x}$: horizontal initial position (in cm) of the fill
pos \mathbf{y} : vertical initial position (in cm) of the fill
html fill color: color of the fill. You can also specify a gradient
$\mathbf{h t m l}$ border color: this is the area color (or boundary color) for the fill
flags: one of the following flags

A the $5^{\text {th }}$ parameter is the color of the area to be filled
B the $5^{\text {th }}$ parameter is the color of the boundary that enclose the area to be filled
If you do not specify a flag, it is considered B as default.

Example:

```
LINE = 1, 0, 1, 6, 1, #0000FF, 0.1
LINE = 1, 0, 8, 6, 8, #0000FF, 0.1
LINE = 1, 1, 0, 1, 9, #0000FF, 0.1
LINE = 1, 5, 0, 5, 9, #0000FF, 0.1
LINE = 1, 0, 9, 6, 0, #0000FF, 0.1
FILL = 1, 2, 2, #FFFF00#FF8000@0, #0000FF
FILL = 1, 2, 7, #FF8000#FFFF00@0, #0000FF
Result: Figure 23
```


Figure 23

FLAGS

This directive sets a set of flags to all the subsequent directives in the script. If you want to remove a flag instead of adding it, use before the "-" symbol (minus).

Syntax:
FLAGS = "range", directive, flags
Parameters:
"range": a set of cards
directive: the directive affected by the flags
flags: the flag or flags to be set
Example:
FLAGS $=1-10$, HTMLTEXT, BE

FOLD

This directive copies a card (or a range of cards) to another position (or range) calculated automatically by the software, it is useful when you want to print fronts and backs of cards on a single page, that can be folded on the horizontal or vertical axis and glued (note that with the horizontal folding the backs are rotated 180°). You can also specify multiple ranges in $1^{\text {st }}$ and $2^{\text {nd }}$ parameter as sequences of ranges. See also PRINT directive (see page 159).

Syntax:
FOLD = "range front", "range back", number, flags
Parameters:
"range front": a card or a range of card to be copied
"range back": a card or a range of card to be copied, front-to-back with the card(s) specified in the $1^{\text {st }}$ parameter,
number: if specified, the card is replicated several times; if not specified, it is treated like one copy
flags: one or more of the following flags
H the folding line is horizontal (if not specified, this is the default folding for landscape page orientation)
V the folding line is vertical (if not specified, this is the default folding for portrait page orientation)

A if there is a horizontal folding line, the vertical gap is augmented until there is an even number of rows, if there is a vertical folding line, the horizontal gap is augmented until there is an even number of columns

Example:
FOLD = 1-10, 11
FOLD $=12-21,22,2$
DUPLEX = 1-3|4-6, 7|8

Note: since nanDECK need to add cards to the deck, you must not use a CARDS directive in the script.

Note: the FOLD directive is not compatible with the DECK directive, do not use both in the same script.

FOLDER

This directive sets the current working directory (if you do not specify it, it will be used the folder where the script is located).

Syntax:
FOLDER = "folder"
Parameters:
"folder": the folder to be used as current working directory
Example:

```
FOLDER = "c:\projects\test"
```


FONT

This directive sets the font for any following TEXT command (see page 173). Note that there is not any reference to a range of cards. If you want a ranged command, you can use FONTRANGE instead (see page 111).

Syntax:
FONT $=$ "font name", font size, style, html color font, html color background, outline x, outline y, step x, step y, char space

Parameters:

"font name": character font name (string)
font size: character font size, in typographical points (1 point $=1 / 72$ of an inch $)$
style: character font style and flag used for visualization; values accepted are:

```
B bold
I italic
U underline
S strikeout
T transparent font background
N do not clip text at the boundary
C circular text
R circular text, reversed
H circular text, half circumference
Q circular text, one quarter circumference
E circular text, three quarter circumference
Z the text follows the curve drawn with the last BEZIER directive
F the size is reduced until the text fits in the rectangle specified by TEXT directive (this value is stored in TF var)
```

V vertical text
P do not clip text area beyond the rectangle
$\mathrm{O} \quad$ transparent font text (flag T is ignored)
D the text is placed in the rectangle's diagonal (from top-left to bottom-right)
G the text is placed in the rectangle's diagonal (from top-right to bottom-left)
A gradient is calculated from the text instead of from the rectangle
X the text is shrunk if too large to fit the rectangle
Y the text is stretched if too small to fit the rectangle
html color font: character color, in the same format used for HTML, you can also specify a gradient
html color background: background color, in the same format used for HTML, you can also specify a gradient
This parameter can be omitted (it will be used the last background color used, or white if none was specified), if you specified T as a style flag, the background color will not be used

Tip: you can choose the font with a Windows standard dialog, clicking on the button "Insert" and choosing the menu voice "Font".

Examples (the difference was in the T flag in the $2^{\text {nd }}$ FONT command):

TEST

```
RECTANGLE = 1, 0, 0, 6, 4, #FF0000
FONT = "Arial", 32, B, #FFFFFF, #0000FF
TEXT = 1, "TEST", 0, 1, 6, 2, center
Result: Figure 24
RECTANGLE = 1, 0, 0, 6, 4, #FF0000
FONT = "Arial", 32, BT, #FFFFFF, #0000FF
TEXT = 1, "TEST", 0, 1, 6, 2, center
Result: Figure 25
```

outline \boldsymbol{x} : horizontal expansion in cm , with that parameter the text will be replicated horizontally from -x to +x
outline y : vertical expansion in cm , with that parameter the text will be replicated vertically from -y to +y
step x : the number of times the text is printed horizontally
step y : the number of times the text is printed vertically
char space: spacing between characters in circular text (if not present, the text is justified)
Example:

```
FONT = "Arial", 32, B, #FFFFFF, #0000FF, 0.1, 0.1
```

TEXT = 1, "TEST", 0, 1, 6, 2, center
Result: Figure 26

Figure 25

4-3

Figure 26

FONTALIAS

This directive enables/disables the font anti-aliasing, using the Operating System's routines. It is useful to remove colored pixels in the text's boundaries, especially when using HTMLTEXT (see page 123) or RTFTEXT (see page 164) directives with transparent background.

Syntax:
FONTALIAS = "range", switch
Parameters:
"range": a range of cards
switch: values accepted are:
ON Font anti-aliasing enabled
OFF Font anti-aliasing disabled
Example:

```
{[html_on]="<style type='text/css'>p {font-size: 32px}</style><p>
ANTIALİASING ON</p>"}
{[html_off]="<style type='text/css'>p {font-size: 32px}</style><p>
ANTIALIASING OFF</p>"}
ELLIPSE = 1, 0, 0, 6, 3, #FF0000
ELLIPSE = 1, 0, 3, 6, 3, #FF0000
FONTALIAS = 1, ON
HTMLTEXT = 1, [html on], 0, 0, 6, 3, #FFFFFF, 0, T
FONTALIAS = 1, OFF
HTMLTEXT = 1, [html_off], 0, 3, 6, 3, #FFFFFF, 0, T
Result: Figure }2
```


Figure 27

FONTCHANGE

This directive changes a font in the script with another. It is useful when you want to test a script on a computer that does not have a font, and you did not want to change all the occurrences (or use a label).

Syntax:
FONTCHANGE = "old font", "new font"
Parameters:
"old font": the font that you want to be changed
"new font": the font that you want to use instead
Example:

```
FONTCHANGE = "Calibri", "Times New Roman"
```


FONTRANGE

This command is equivalent to FONT (see page 109) but is applied to a range of cards (specified by the $1^{\text {st }}$ parameter).
Syntax:
FONTRANGE = "range", "font name", font size, style, html color font, html color background, outline x, outline y, step x, step y, char space

Parameters:
"range": a range of cards
"font name": character font name (string)
size: character font size, in typographical points (1 point $=1 / 72$ of an inch $)$
style: character font style and flag used for visualization; values accepted are:

```
B bold
I italic
U underline
```

html color font: character color, in the same format used for HTML, you can also specify a gradient
html color background: background color, in the same format used for HTML, you can also specify a gradient
outline \boldsymbol{x} : horizontal expansion in cm , with that parameter the text will be replicated horizontally from -x to +x
outline y : vertical expansion in cm , with that parameter the text will be replicated vertically from -y to +y
step \boldsymbol{x} : the number of times the text is printed horizontally
step y : the number of times the text is printed vertically
char space: spacing between characters in circular text (if not present, the text is justified)

Tip: you can choose the font with a Windows standard dialog, clicking on the button "Insert" and choosing the menu voice "Font".

FOOTER

This directive prints a text in the page's footer specified by a page range (with a syntax like cards' range).
Syntax:
FOOTER = "page range", "text", horizontal alignment
Parameters:
"page range": a set of pages, if empty the text is printed onto all the pages
"text": the text to be printed, you can also use four variables:
\{P\} page number
$\{\mathrm{N}\}$ total page number
\{D \} date
\{T\} time
horizontal alignment: the text's horizontal alignment in the page, values accepted are:

LEFT	left aligned
CENTER	centered
RIGHT	right aligned

If not specified, the text is centered.
Examples:

```
FOOTER = "1-3", "Deck 1", CENTER
FOOTER = "", "printed {D} {T}", RIGHT
```


FOR

This directive executes the code between a FOR row and a NEXT row (see page 152), exiting when the counter value is equal to end value, starting from start value and adding a step value at each loop.

Syntax:

FOR $=$ counter name, start, end, step
Parameters:
counter name: the variable counter storing the value, can be chosen between A B C E F G H I J
start: starting value for the counter
end: ending value for the counter
step: increment for counter at each loop, if not specified is assumed to be 1
Example:

```
FOR = A, 1, 4
    FOR = B, 1, 7
        RECTANGLE = 1, A, B, 1, 1, #FF0000, #0000FF
    NEXT
NEXT
Result: Figure 28
```


FRAME

This directive is used in a FRAME...ENDFRAME structure to define frames using characters in rectangular patterns, for example, if you want to define three frames, one for the card, one for an image and one for the text below, you can write these lines:

FRAME
AAAAAA
ABBBBA
ABBBBA
ABBBBA
ACCCCA
ACCCCA
AAAAAA
ENDFRAME
The result is equal to these lines:

```
<A}\rangle=0%,0%,100%,100
<B}>=16.7%,14.3%,66.7%,42.9
<C>=16.7%,57.1%,66.7%,28.6%
```

With this method, you can create 36 frames (one for each letter/number), the names are case-insensitive.
Syntax:

FRAME $=$ list split frames
Parameters:
list split frames: if you add here some frames, these frames are treated individually, and are not merged in a single frame. In the last example, if you specify \mathbf{B} as a parameter, instead of one frame, the program creates twelve frames (all named B)

GAP

This directive sets a space between cards in printed pages. If the directive GAP is not specified, there will be no gap between cards.

Syntax:
GAP $=$ horizontal gap, vertical gap, line switch, fill switch, guidelines, guide color, cross size
Parameters:
horizontal gap: horizontal space (in cm)
vertical gap: vertical spaces (in cm)
line switch: values accepted are:
ON to enable a guideline in the middle of the gap
OFF to disable it (the default)
fill switch: values accepted are:
ON when using CROSS guidelines, they are prolonged across the middle of the gap
OFF the middle of the gap is not drawn (the default)
guidelines: the graphic type of the middle guideline (if present). You can choose between:

NONE	no guideline
SOLID	solid lines
DOTTED	dotted lines
DASHED	dashed lines
MARK	draws cut marks only (solid lines)
MARKDOT	draws cut marks only (dotted lines)
MARKDASH	draws cut marks only (dashed lines)
CROSS	draws cut marks and crosses (solid lines, the length is set with the 6th parameter)
CROSSDOT	draws cut marks and crosses (dotted lines, the length is set with the 6th parameter)
CROSSDASH	draws cut marks and crosses (dashed lines, the length is set with the 6th parameter)

guide color: color of the middle guideline (if present), in the same format used for HTML, same color of other guidelines if not specified
cross size: length of the arm of the cross (in cm) for CROSS/CROSSDOT/CROSSDASH guideline type
If the directive GAP is not specified, there is no gap between cards.
Example:
GAP = 1, 1

GRADIENTS

This directive can be used to specify additional parameters used in drawing gradients, or to add other gradients color; it works on every directive that uses gradients, and you can use more than one GRADIENTS directive.

Syntax:

GRADIENTS $=$ "range", compression, rotation, flags, pos x, pos y, html color, factor, twist, scatter
Parameters:
"range": a set of cards
compression: a factor used to draw gradient bands narrowly (greater than 1) or broadly (less than 1)
rotation: each axis is rotated of this angle (in degrees), it is used also in conic or star gradients
flags: you can use the following flags:
$\mathrm{N} \quad$ each pixel is drawn in the color of the closest axis between the two that define the sector in which it resides
F each pixel is drawn in the color of the farthest axis between the two that define the sector in which it resides
M each pixel is drawn in the average color of the two axis that defines the sector in which it resides
A each pixel is drawn in the average color of all axes
P each pixel is drawn in the average color of all axes, proportionally to the distance from the point specified with $5^{\text {th }}$ and $6^{\text {th }}$ parameters; it is also used in all the special gradients to specify the origin point
D delete all current gradients
pos \boldsymbol{x} : horizontal position (in cm) of point used with P flag
pos \boldsymbol{y} : vertical position (in cm) of point used with P flag
html color: in the same format used for HTML, you can also specify a gradient
factor: for star gradients, it defines the "pointy" aspect of the star
twist: for star gradients, it defines if the star is twisted clockwise (positive number) or counterclockwise (negative number)
scatter: for star gradients, it defines an angle of random scattering

GRID

This directive draws a grid in a set of cards.
Syntax:
GRID = "range", pos x, pos y, width, height, html color, thickness, horiz. cells, vert. cells, pattern
Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm)
html color: border color of the grid, in the same format used for HTML, you can also specify a gradient
thickness: thickness of the grid (in cm), if set to zero, the grid's border will be 1 pixel wide
horiz. cells: number of horizontal cells
vert. cells: number of vertical cells
pattern: a pattern for the line used to draw the grid, this pattern can be composed of:
O dot
D dash
S space
These letters can be repeated, for example "OSDSOS" is a valid pattern.
Example:

Figure 29

HEADER

This directive prints a text in the page's header specified by a page range (with a syntax like cards' range).
Syntax:
HEADER = "page range", "text", horizontal alignment
Parameters:
"page range": a set of pages, if empty the text is printed onto all the pages
"text": the text to be printed, you can also use four variables:
\{P\} page number
$\{\mathrm{N}\} \quad$ total page number
$\{\mathrm{D}\}$ date
\{T\} time
horizontal alignment: the text's horizontal alignment in the page, values accepted are:
LEFT left aligned
CENTER centered
RIGHT right aligned
If not specified, the text is centered.
Examples:
HEADER = "1-3", "Deck 1", CENTER
HEADER = "", "printed \{D\} \{T\}", RIGHT

HEXGRID

This directive draws a hexagonal grid in a set of cards.
Syntax:
HEXGRID = "range", pos x, pos y, width, height, hex side, flags, html color, html color, thickness
Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position (in cm)
$\boldsymbol{p o s} \mathbf{y}$: vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm)
hex side: length of the hexagon' side (in cm)
flags: you can use the following flags:
D add a dot in the center of the hexagon
L add a letter in each hexagon (A, B, C...)
$\mathrm{N} \quad$ add a number in each hexagon ($1,2,3 \ldots$)
P add a zero-padded number in each hexagon ($01,02,03 \ldots$)
C add two numbers in each hexagon ($11,12,13 \ldots 21,22,23 \ldots$)
E add a letter and a number in each hexagon (A1, A2, A3 ... B1, B2, B3...)
. add a dot as a separator for C flag

- add a minus as a separator for C flag
- add an underscore as a separator for C flag
$\overline{\mathrm{X}} \quad$ do not draw the grid (useful if you want only a dot or a label)
html color: border color of the grid, in the same format used for HTML, you can also specify a gradient
html color: inner color of the hexagons, in the same format used for HTML, if not specified the inner color is the same of border color. You can also specify "EMPTY" for a hollow (and transparent) hexagon or a gradient
thickness: thickness of the grid (in cm), if omitted, the grid's border is 1 pixel wide
Example:
FONT = ARIAL, 10, , \#000000
HEXGRID $=1,0,0,6,9,1, \mathrm{~N}, ~ \# 000000$, \#00FF00
Result: Figure 30

Figure 30

HTMLBORDER

This directive draws a border around a text with a specific tag (that was created with HTMLFONT directive, see page 119) to be used in HTMLTEXT directive (see page 123); this directive works only with E flag in HTMLTEXT (MS Explorer).

Syntax:
HTMLBORDER $=$ "html tag", type, html color, thickness, gap top, gap left, gap right, gap bottom, corner rounding, html color background, alpha, min. height, max. height

Parameters:
"html tag": a name used for referencing the font
type: the style used to draw the border, can be one of this keywords:
RECTANGLE
DOTTED
DASHED
DOUBLE
GROOVE
RIDGE
INSET
OUTSET
NONE
html color: the color of the border, in the same format used for HTML
thickness: thickness of the border (in cm)
gap top: the gap between top border and the text, in cm gap left: the gap between left border and the text, in cm gap right: the gap between right border and the text, in cm gap bottom: the gap between bottom border and the text, in cm corner rounding: the corners of the border are rounded; the value is the radius of the circle used html color background: the color of the inner rectangle, in the same format used for HTML
alpha: level of transparency of inner rectangle, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid)
min. height: the minimum height of the inner rectangle, used if the text is smaller than that max. height: the maximum height of the inner rectangle, used if the text is longer than that

Example:

```
HTMLFONT = alpha, Arial, 32, , #000000
HTMLBORDER = alpha, DOTTED, #FFO000, 0.1
HTMLTEXT = 1, "this is a test", 0, 0, 100%, 100%, #FFFFFF, 0, EB, 100, alpha
```


HTMLFILE

This directive prints the HTML text loaded from a filename in the cards specified by a range.
Syntax:
HTMLFILE = "range", "html file", pos x , pos y , width, height, html color, angle, flags, alpha
Parameters:
"range": a set of cards
"html file": the HTML filename for text to be printed (eventually with a pathname)
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the text's rectangle (in cm)
height: height of the text's rectangle (in cm)
html color: background color for text
angle: angle of text rotation, you must specify 0 for no rotation
flags: you can specify one or more flags, chosen between:
T Transparent background for text
H Horizontal mirror
V Vertical mirror
I HTML rendering with internal engine
A HTML rendering with internal engine (new)
E HTML rendering with Explorer
2 Render a x2 image (do not use if you already have an OVERSAMPLE directive)

4 Render a x4 image (do not use if you already have an OVERSAMPLE directive)
8 Render a x8 image (do not use if you already have an OVERSAMPLE directive)
R Vertical text
B Transparent background, better rendering of png, works only with E flag (MS Explorer)
W Wait 100 msec
O Replace tags also between < and >
C Clear page after rendering (MS Explorer)
N Use always a new instance (MS Explorer)
alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent)

Example:
HTMLFILE = 1, "C:\test.html", 0, 0, 6, 9, \#FFFFFF, 0, T

Result: Figure 31

HTMLFONT

This directive creates a tag that can be used for recalling a font in an HTMLTEXT directive (see page 123), for example, if the tag is name, the string "one <name>two</name> three" has the word "two" written with the font defined by it; tags can be nested, therefore if you want the other words to be written with other font, you can use the string "<other>one <name>two</name> three</other>". If you create a tag with name example, in HTMLTEXT you can also assign these characteristics in an HTML text using example as the $11^{\text {th }}$ parameter. If an alignment is specified, the program creates a "paragraph" font (a <div> tag in HTML) therefore its text is organized in a new paragraph (with a newline added when it's closed), otherwise the program creates a "text" font (a tag in HTML). In other words, if you want to use different font on the same line, it is possible only by omitting the alignment parameter. Note that for default the text in HTMLTEXT is word-wrapped, so there is not a flag to enable it. There are three special tags: th, $\mathbf{t r}$, and td, that are used with the HTML tags of the same names (i.e., in tables).

Syntax:
HTMLFONT = tag, "font name", font size, style, html color, alignment, shadow x, shadow y, shadow blur, shadow color, outline color, outline width, indent, highlight color, char. spacing, angle

Parameters:
tag: a name used for referencing the font
"font name": character font name (string)
font size: character font size, in typographical points (1 point $=1 / 72$ of an inch)
style: character font style and flag used for visualization; values accepted are:

B	bold
I	italic
U	underline
S	strikeout
O	shadow over outline (the default is outline over shadow)
N	do not resize this font when using F flag in HTMLTEXT (see page 123)
P	resize this font proportionally to the main font when using F flag in HTMLTEXT (see page 123)
R	the outline of the font is done in a more refined way
C	break lines at every character
T	the HTML syntax is formatted for table cells
A	small cap
M	multiple shadows (use sequences for parameters from $7^{\text {th }}$ to $10^{\text {th }}$)
D	keep decimals in the font size calculation
L	round down to integers the font size calculation
G last line aligned to the right	
E	last line aligned to the center

J last line justified
H automatic hyphenation (you must specify the language with an HTMLLANG directive, see page 122)
Y manual hyphenation (you must specify the syllables of a word using one or more $\boldsymbol{\&}$ shy; tag)
Z forces the text on a single line
W the text is converted to upper case
V the text is converted to lower case
F the first letter of the text is converted to upper case, the others to lower
X to add the HTML tag for overflow: auto
html color: character color, in the same format used for HTML
alignment: the text's horizontal alignment, values accepted are:
left left aligned
center centered
right right aligned
justify the text is justified
The horizontal alignment is optional, if omitted is equal to left
shadow x : the horizontal offset for a shadow drawn under the text. Note: all the shadow's parameters work only with flag E, and Internet Explorer must be version 11 or more
shadow y : the vertical offset for a shadow drawn under the text
shadow blur: if you specify this parameter, the shadow is blurred
shadow color: the color for the text' shadow, in the same format used for HTML
outline color: the color for the text's outline, in the same format used for HTML
outline width: the width for the text's outline
indent: the indentation in cm of the first line (you can specify a negative number for hanging indentation)
highlight color: color for the background of the text, in the same format used for HTML
This is a test

Figure 32

HTMLFONT = alpha, Arial, 32, , \#000000
HTMLFONT = beta, "Times New Roman", 18, I, \#0000FF
HTMLKEY $=1$, (test), test, alpha
HTMLTEXT $=1$, "This is a (test)", 0, 0, 100\%, 100\%, \#FFFFFF, 0, E, 100, beta
Result: Figure 32

HTMLFONTSTEP

The F flag in the HTMLTEXT directive (see page 123) works by reducing the size of the font by steps of one until the text fits in the rectangle area. This directive changes the value of the step. Note that you should not choose a value too small, because if nanDECK does not see a variation in the size of the text (i.e., the variation is small than one pixel), it stops this process.

Syntax:
HTMLFONTSTEP = "range", font size step, width min, adjust multi
"range": a set of cards
font size step: the value of the step
width min: the minimum threshold for considering when lines have the same length (for G flag in HTMLTEXT), the default is zero
adjust multi: the starting decrement in font size (for F flag in HTMLTEXT), the default is 8

HTMLIMAGE

To simplify insertion of images in HTMLTEXT directives (see page 123), you can specify a name with this directive, associated with a filename, width, and height. When an HTMLTEXT is rendered, the name is substituted with an HTML tag for the image, with the correct size.

Note: in the name do not use [] (they are used for labels) or \{ \} (they are used for calculations).

Syntax:
HTMLIMAGE = "range", key, "image file", width, height, flags, angle, margin top, margin left, margin right, margin bottom, htmlfont, pos X, pos Y
"range": a set of cards
key: the name associated to the image (replaced in HTML)
"image file": the filename for the image
width: width of the image (in cm)
height: height of the image (in cm)
flags: you can specify one or more flags, chosen between:
P proportional
T image alignment to the top of text (only with Explorer)
M image alignment to the middle of text (only with Explorer)
B image alignment to the bottom of text (only with Explorer)
L image alignment to the left of the rectangle, text flushing right (only with Explorer)
R image alignment to the right of the rectangle, text flushing left (only with Explorer)
E image alignment to the left (under other images with L flag), text flushing right (only with Explorer)
I image alignment to the right (under other images with R flag), text flushing left (only with Explorer)
C the replacement of the key with the image is made in a case-sensitive way
D this image is not resized when a F flag is used in the HTMLTEXT directive
H this image is drawn over the text
A margins are also adjusted when an F flag is used in the HTMLTEXT directive
X do not smooth the image
G you can add a variable text in the key (before the last character) to be shown over the image
U the text added with G flag is drawn under the image
angle: the angle of the rotation for the image
margin top: the size of the top margin, in cm (the default is no margin)
margin left: the size of the left margin, in cm (the default is no margin)
margin right: the size of the right margin, in cm (the default is no margin)
margin bottom: the size of the bottom margin, in cm (the default is no margin)
alpha: level of transparency of the image, from 0 (full transparent) to 100 (full solid); if omitted, the level is set to 100 (full solid).
htmlfont: the text (added with G flag) is drawn with this font, defined by a HTMLFONT directive (see page 119) $\operatorname{pos} \boldsymbol{X}$: the orizontal position (in \%) of the text (added with G flag); if omitted, is set to 50 (the center of the image) pos \boldsymbol{Y} : the vertical position (in \%) of the text (added with G flag); if omitted, is set to 50 (the center of the image)

Example:

```
HTMLIMAGE = 1, "(one)", "image.bmp", 1, 1, P
HTMLTEXT = 1, "Test (one)", 0, 0, 6, 9, #FFFFFF, 0, T
```


HTMLKEY

With this directive, you can create words that are replaced by longer texts in HTMLTEXT directive (see page 123). If you leave empty the $3^{\text {rd }}$ parameter, the key is deleted instead.

Syntax:
HTMLKEY = "range", "key", "text", htmlfont, flags, "replace"
"range": a set of cards
"key": a string that is searched and replaced with text parameter
"text": a string that replaces the key parameter
$\boldsymbol{h t m l f o n t}$: add start and end tags for a font defined by an HTMLFONT directive (see page 119)
flags: you can specify one or more of these flags:
C the replacement of the key with the text is made in a case-sensitive way
R the key searched can be specified using a regular expression
Z forces the text on a single line
D delete the key
replace: this is the character that, in "text" parameter, is replaced with the found text (useful with R flag)
Example:

```
HTMLFONT = fnt0, Arial, 10, , #000000
HTMLFONT = fnt1, Arial, 16, , #000000
HTMLFONT = fnt2, Arial, 16, B, #FF0000
HTMLKEY = 1, (test), "only (one) word", fnt1
HTMLKEY = 1, (one), "one", fnt2
HTMLTEXT = 1, "Test (test)", 0, 0, 6, 9, #FFFFFF, 0, E, 100, fnt0
```


HTMLLANG

With this directive, you specify the language that is used for the automatic hyphenation, when the H flag is used in HTMLFONT (see page 119).

Syntax:
HTMLLANG = language
language: a string that define the language used (en, fr, de, it, etc.)
Example:
HTMLLANG = it

HTMLMARGINS

This directive adds the settings for margins and vertical alignment to an existing tag (that was created with HTMLFONT directive, see page 119) to be used in HTMLTEXT directive (see page 123); this directive works only with E flag in HTMLTEXT (MS Explorer).

Syntax:
HTMLMARGINS $=$ " $h t m l$ tag", margin top, margin left, margin right, margin bottom, paragraph alignment, line spacing, cell width, cell height, stretch hor., stretch ver., angle

Parameters:
"html tag": a name used for referencing the font
margin top: the size of the top margin, in cm
margin left: the size of the left margin, in cm
margin right: the size of the right margin, in cm
margin bottom: the size of the bottom margin, in cm
paragraph alignment: the text's vertical alignment, values accepted are:

top	top aligned
center	centered
bottom	bottom aligned

line spacing: the text's line spacing in $\%$, the default is 100 is for a single line
cell width: the width of a table cell, in cm (it works only when T flag is used in HTMLFONT)
cell height: the height of a table cell, in cm (it works only when T flag is used in HTMLFONT)
stretch hor.: the font is shrunk horizontally (if the value is less than 100) or stretched (if the value is greater than 100)
stretch ver.: the font is shrunk vertically (if the value is less than 100) or stretched (if the value is greater than 100) angle: the angle of rotation of the text

Example:

```
HTMLFONT = alpha, Arial, 32, , #000000
HTMLMARGINS = alpha, 0.5, 1, 1
HTMLTEXT = 1, "This is a test", 0, 0, 100%, 100%, #FFFFFF, 0, EB, 100, alpha
```

Note: using 100 as line spacing gives a different result from leaving that parameter empty, it is a behavior of HTML.

HTMLTEXT

This directive prints a text, using HTML format, in the cards specified by a range. This directive is useful if you want to print a text with multiple size, font, attributes, colors and so on. For expressions, you must include them in double curly parentheses $\{\{\ldots\}\}$. You can add also one or more images, using a keyword(s), coded with the HTMLIMAGE directive (see page 121).

Syntax:
HTMLTEXT = "range", "text", pos x, pos y, width, height, html color, angle, flags, alpha, htmlfont1, htmlfont2, separator

```
Parameters:
"range": a set of cards
"text": the HTML text to be printed
pos x: horizontal position (in cm)
pos y: vertical position (in cm)
width: width of the text's rectangle (in cm)
height: height of the text's rectangle (in cm)
html color: background color for text
angle: angle of text rotation, you must specify 0 for no rotation
flags: you can specify one or more flags, chosen between:
T Transparent background for text
H Horizontal mirror
V Vertical mirror
I HTML rendering with old internal engine (default)
A HTML rendering with new internal engine
E HTML rendering with MS Explorer
K HTML rendering with Google Chrome
2 Render a x2 image (better use the OVERSAMPLE directive)
4 Render a x4 image (better use the OVERSAMPLE directive)
8 Render a x8 image (better use the OVERSAMPLE directive)
R Vertical text
B Transparent background, better rendering of png, does not work with I flag
F The text is reduced to fit the rectangle, does not work with I flag
S The text is reduced to fit the rectangle and the size is saved for the next cards, does not work with I flag
J The text is enlarged to fit the rectangle, does not work with I flag
G The width is reduced to set the lines with the same length
M The images are resized with the text, works only with F flag
L TEXTLIMIT variables are calculated more accurately, does not work with I flag
O Replace tags also between < and >
U The fonts in 12 th parameter are applied sequentially
C Clear page after rendering, works only with E flag
N Use always a new instance, works only with E flag
Y Keep the HTML file on disk, for debugging, does not work with internal engines
Z Instead of a temporary file on disk, use RAM, works only with E flag
X Instead of a temporary file on disk, use RAM (alternate method), works only with E flag
Q Instead of a temporary file on disk, use RAM (alternate method), works only with E flag
```

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent)
htmlfont1: add to the whole text the start and end tags for a font defined by an HTMLFONT directive (see page 119)
htmlfont2: add to each paragraph the start and end tags for a font defined by an HTMLFONT directive (see page 119)
separator: you can specify the separator of each paragraph (if not specified, it is $<\mathrm{br}>$).

Example:

```
[HTML] = "(text) example<br>(image) example<br>(earth)"
HTMLFONT = fnt, Arial, 10, , #000000
HTMLFONT = fntb, Arial, 10, B, #000000
```

```
HTMLKEY = 1, (text), "Text", fntb
```

HTMLKEY $=1$, (image), "Image", fntb
HTMLIMAGE $=1$, (earth), earth.jpg, 6, 6
HTMLTEXT $=1$, [HTML], 0, 0, 6, 9, \#FFFFFF, 0, E, 100, fnt
Result: Figure 33

ICON

This directive assigns one or more characters (a "key") to an image, to be used later with an ICONS directive (see page 125). Note that if the key is longer than one character (the default), it must be specified as $14^{\text {th }}$ parameter in ICONS.

Syntax:
ICON = "range", key, "image file", width factor, height factor
Parameters:
"range": a set of cards
key: one or more characters used to identify the image (like "A" or " 001 ")
"image file": an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif
width factor: the width of the image is adjusted with this factor, a value larger than 100 enlarge the width of the image, a value less than 100 shrink the width of the image (if not specified, the width factor of the image is 100)
height factor: the height of the image is adjusted with this factor, a value larger than 100 enlarge the height of the image, a value less than 100 shrink the height of the image (if not specified, the height factor of the image is 100)

Example:

```
ICON = "1-10", A, "c:\images\image1.jpg"
ICON = "1-10", B, "C:\images\image2.jpg"
ICON = "1-10", C, "c:\images\image3.jpg"
```


ICONS

This directive prints a number of images in a rectangular area, like a multi-image PATTERN directive (see page 155), the "keys" parameter identifies the images used, defined before with some ICON directives (see page 125), note that by default each key is one character long, but you can have a longer key by specifying the length in the $14^{\text {th }}$ parameter. For example, if you write:

```
ICON = "1-10", A, "c:\images\image1.jpg"
ICON = "1-10", B, "c:\images\image2.jpg"
ICON = "1-10", C, "c:\images\image3.jpg"
```

You can use a key of " ABC " in an ICONS line to print the three images all together in a rectangular area. This directive is useful when you must convert to images an output from the combination/permutation engine. You can also use these special characters:
$<$ adds a backspace and draw two images in the same place; for example, a key like " $\mathrm{P}<2$ " means that the image assigned to " 2 " is printed over the image assigned to " P "
$>$ adds a newline; for example, a key like "A>BB" draws first the image "A", and two images "B" in a new line, i.e., the three images are arranged in a triangle pattern
_ the image corresponding to the next key is shown in the current icon space, merged with the next. For example, _A means that image A is shown in the merged space of two icons; \qquad A means that image A is shown in the merged space of three icons

Note: if you have a key longer than one character, these special characters must be replicated as well (i.e., with a key

 length of two, the special characters become "<<", ">>"," ".".Syntax:

ICONS = "range", keys, pos x , pos y , width, height, obj width, obj height, angle, flags, horizontal alignment, vertical alignment, alpha, key length, width factor, height factor

Parameters:
"range": a set of cards
keys: a string, composed by characters assigned to images with ICON directives
pos \mathbf{x} : horizontal position (in cm)
$\boldsymbol{p o s} \mathbf{y}$: vertical position (in cm)
width: width of the rectangle in which the images are printed (in cm)
height: height of the rectangle in which the images are printed (in cm)
obj width: width of the single image to be printed (in cm)
obj height: height of the single image to be printed (in cm)
angle: angle of image rotation, if not specified it is assumed to be 0 (for no rotation)
flags: in this parameter, you can specify a special behavior for images, possible values are:

T	Transparent
A	Anti-aliasing
R	Reverse, reversing the filling order of pattern's elements (from bottom to top)
N	Use PNG transparency
P	Proportional
C	Extends the image cropping the borders
V	Vertical pattern
W	Distribute icons in width
H	Distribute icons in height

horizontal alignment: the images' horizontal alignment in the rectangle, values accepted are:

LEFT	left aligned
CENTER	centered (the default)
RIGHT	right aligned

vertical alignment: the images' vertical alignment in the rectangle, values accepted are:

TOP	top aligned
CENTER	centered (the default)
BOTTOM	bottom aligned

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent)
key length: the default length of the character string utilized for key is one character, but a
different length can be specified here, the "keys" parameter length must be a multiple
width factor: the width of the space for an image is adjusted with this factor, a value larger than 100 enlarge the width of the space, a value less than 100 shrink the width of the space (if not specified, the width factor of the space is 100)
height factor: the height of the space for an image is adjusted with this factor, a value larger than 100 enlarge the height of the space, a value less than 100 shrink the height of the space (if not specified, the height factor of the space is 100)

Example:

```
RECTANGLE = 1, 0, 0, 6, 6, #0000FF
ICON = 1, A, "C:\images\dot red.gif"
ICON = 1, B, "c:\images\dot`blue.gif"
ICON = 1, C, "c:\images\dot_black.gif"
ICONS = 1, BAC, 0, 0, 6, 6, 2, 2, 0, T, CENTER, CENTER
Result: Figure 34
```


IF

Figure 34
The IF...ENDIF structure can be used to create sections of code that must be executed only if are verified some conditions.

Syntax:
IF = value 1 operator value 2
ELSEIF $=$ value 3 operator value 4
ELSEIF $=$ value 5 operator value6
...
ELSE
ENDIF

Parameters:
value: a string, number, label, or expression that can be evaluated
operator: the condition is evaluated using the two values and this operator, you can use one operator from this list:

```
= value1 and value2 are equal
value1 is major than value2
< value1 is minor than value2
>= value1 is major or equal than value2
<= value1 is minor or equal than value2
<> valuel and value 2 are different
@) value1 is contained into value2
# value1 is not contained into value2
```

More than one test can be combined using Boolean logic, every test must be enclosed in parenthesis, and these are the accepted keywords:

If in an expression there are more than one logic operator, they are evaluated with these priorities (if they have the same priorities, they are evaluated from left to right):

1) _NOT
2) _AND_
3) - OR_{-}

Examples:

```
; choose a value between R, E and T
[check] = R
IF = [check] = R
    RECTANGLE = 1, 0, 0, 6, 9, #0000FF
```

```
ELSEIF = [check] = E
    ELLIPSE = 1, 0, 0, 6, 9, #00FF00
ELSEIF = [check] = T
    TRIANGLE = 1, 3, 0, 6, 9, 0, 9, #FF0000
ELSE
    RECTANGLE = 1, 0, 0, 6, 9, #000000
ENDIF
; complex logic
if=([a]=1) _AND_ _NOT_ ([b]=3)
; in this example, the _AND_ operator is evaluated first
if=([a]=1) _OR_ ([b]=1) _ AND
; in this example, the _OR_ operator is evaluated first
if=(([a]=1) _OR_([b]=1)) _AND_ ([c]=1)
```

Note: if you want to use a sequence as argument for the IF directive, you must extract an element using the ? operator (and \S for the number of the current card) inside an expression (with curly brackets). For example:

```
IF = {sequence?§} = element
```


IMAGE

This directive can be used to add an external image to a range of cards.
Syntax:
IMAGE $=$ range, image file, pos x , pos y , width, height, angle, flag, alpha, texture width, texture height, skew x, skew y, img width, img height, loc x, loc y, copy x, copy y

Parameters:
range: a set of cards (the standard rules about ranges will be applied)
image file: an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the image (in cm)
height: height of the image (in cm)
angle: angle of image rotation, can be 0 for no rotation
These are the required parameters. This directive can be used for a background on all your cards, or a logo on top-right, or a centered image. Simply specify range, image, position, and angle. For example:

```
IMAGE = 1, "C:\images\earth.jpg", 0, 0, 6, 9, 0
Result: Figure 35
```

Note that the image will fill the destination rectangle, the standard behavior of this command is resizing the original image and altering the aspect ratio for width and height. If you want to maintain the original aspect you must use a flag, as additional parameter.

```
RECTANGLE = 1, 0, 0, 6, 9, #0000FF
IMAGE = 1, "C:\images\earth.jpg", 0, 0, 6, 9, 0, P
Result: Figure 36
```


Figure 35

Figure 36
flag: in this parameter you can specify any, some or all these letters:

P Proportional
A Anti-aliasing
G Grayscale
H Horizontal mirror
V Vertical mirror
T Transparent
X Texture
N Use PNG transparency
R Do not adjust size for rotated images
D Use DPI from image file
C Extends the image cropping the borders
I Reads the EXIF tags for orientation from file
J Use an alternate library for loading images in jpeg format
$\mathrm{U} \quad$ Align the image to the upper boundary of the rectangle (with P/C flag)
E Align the image to the right boundary of the rectangle (with P/C flag)
S Align the image to the lower boundary of the rectangle (with P/C flag)
W Align the image to the left boundary of the rectangle (with P/C flag)
O Crop the source image (x, y, width, and height specified in parameters from 10th to 13th)
With the " P " flag, the image will be resized maintaining the original aspect ratio. The previous background remains unchanged in the zone not occupied by the image.

With the "A" flag, to the image will be applied a smoothing filter. There are no other settings related to that parameter.
With the "G" flag, the image will be reduced to tones of gray (256 levels maximum). There are no other settings related to that parameter.

With the "H" or "V" flags, the image will be mirrored in the corresponding direction (these flags may be used both with the same image).

If the "T" flag is used, the image will be rendered with a transparent color. If the CHROMAKEY directive was not used before, the transparent color is assumed to be the first pixel of the image (top left pixel). With the CHROMAKEY directive (see relative entry, page 91), you can specify a pixel from another corner, or directly a color.

With the " X " flag, the image is used to fill the destination space (see texture width/height parameters).
With the " N " flag, the image is loaded reading the transparency information (only PNG format).
Without the " R " flag, a rotated image is stretched to be fully included in the destination rectangle, with this flag, the directive maintains the original size for the rotated image.

With the "D" flag, the size of the image is adjusted reading the DPI from the file (only with BMP, PNG, and JPG formats).

With the "U", "E", "S", and "W" flags (to be used with P/C flag), the image is aligned to the relative boundaries of the rectangle (if not specified, the image is centered).

If the " O " flag is specified, only the rectangle indicated by the $10^{\text {th }}$ to $13^{\text {th }}$ parameters is read from the original image (note that with this flag, the texture and skew options are not usable).
alpha: level of transparency of image, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent), for example:

```
RECTANGLE = 1, 0, 0, 6, 9, #0000FF
IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P, 100@90
Result: Figure 37
```


Figure 37
texture width: width of the texture (in cm), used only with " X " flag, if omitted the default is the image's width
texture height: height of the texture (in cm), used only with " X " flag, if omitted the default is the image's height
This is an example of using a texture to fill a space on a card (note, the alpha-channel is specified because you cannot leave the parameter empty), with texture size 1 x 1 cm (remember, the card is 6 x 9 cm):

```
IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, X, 100, 1, 1
Result: Figure 38
```

skew \boldsymbol{x} : draw the image shifted horizontally (to the right for positive number, to the left for negative), the value 1 is the image's width (you can use a decimal value)
skew y: draw the image shifted vertically (to the bottom for positive number, to the top for negative), the value 1 is the image's height (you can use a decimal value)

Figure 38

Figure 39
img height: if this parameter is specified, the image is not enlarged to the whole rectangle, but instead is drawn with this width (in cm)
loc x : if this parameter is a positive value, the image is positioned at that $\%$ of width, with a width equal to the parameter image width; if this parameter is a negative one, the image is split horizontally at that $\%$ of his width, and the two halves are positioned at the edge of the rectangle
loc y : if this parameter is a positive value, the image is positioned at that $\%$ of height, with a height equal to the parameter image height; if this parameter is a negative one, the image is split vertically at that $\%$ of his height, and the two halves are positioned at the edge of the rectangle
copy x : if the image is split horizontally, the empty gap between the two halves is filled with a $\%$ of the image, starting from the cut point
copy y : if the image is split vertically, the empty gap between the two halves is filled with a $\%$ of the image, starting from the cut point

Tip: you can choose a name (and path) from a Windows standard dialog, clicking on the button "Insert" and choosing the menu voice "Image".

Tip: if you drag and drop an image file in nanDECK's window, an IMAGE line is added with the path and filename of the image.

IMAGEENC

This directive is used to start an IMAGEENC...ENDIMAGEENC structure, for including an image as encoded text directly into the script. You can encode an image file with a click on the "Insert >" button and choosing the "Image as encoding" option.

Syntax:
IMAGEENC = filename
Parameter:
filename: the filename of the image that is created with the encoded data

Example:

```
IMAGEENC = sun.png
iVBORw0KGgoAAAANSUhEUgAAAsUAAALFCAYAAAAry54YAAAACXBIWXMAAC4jAAAuIwF4pT92AAAZIUlE
QVR42u3WWXYcOQxFQXv/
```

AwBQnigGAKA8UQwAQHmiGACA8kQxAADliWIAAMoTxQAAlCeKAQAo719v+uorjuQNjgAAAABJRU5ErkJg $9 \mathrm{~g}==$
ENDIMAGEENC

IMAGEFILTER

This directive sets the filter and blend routines using when images are loaded and resized in a card (with IMAGE, ICONS, PATTERN, HTMLTEXT/HTMLFILE, RTFTEXT/RTFFILE, and OVERSAMPLE directives). If not specified, the default filter is LINEAR, and the default blend is SOLID

Syntax:
IMAGEFILTER $=$ filter name, blend name
Parameters:
filter name: the filter may be one of the following:
NEAREST
DRAFT
LINEAR
COSINE
SPLINE
LANCZOS
MITCHELL
blend name: the blending routine may be one of the following:
SOLID
ADD
SUB
MOD
DIV
DARKEN
LIGHTEN
SCREEN
DODGE
BURN
DIFFERENCE
EXCLUSION
AVERAGE
SCALE
BLENDADD
BLENDMOD

Example:
IMAGEFILTER=LANCZOS

IMAGELIMIT

This directive fills four variables with the values of the coordinates that delimit an image, specifying a background color, optionally with a threshold (zero for detecting every color different from the background, 100 for a difference between total white and total black). You can use these variables in other commands.

Syntax:

IMAGELIMIT = "range", pos x, pos y , width, height, html color, threshold
The four variables are:

PL	(left)
PR	(right)
PT	(top)
PB	(bottom)

Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the area (in cm)
height: height of the area (in cm)
html color: background color for identify the image
threshold: this parameter sets the difference between the background color and the color detected as part of the image

IMAGESIZE

This directive reads an image and writes in two variables the image's width and height (in pixel).
Syntax:
IMAGESIZE = "range", "image file"
The variables are:

IW image's width
IH image's height
Parameters:
"range": a set of cards
"Image file": an existent image file (eventually with a path), formats allowed are bmp, gif, png and jpg
Example:

```
IMAGESIZE = 1, "c:\images\earth.jpg"
IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 6, 0, P
FONT = Arial, 16, , #000000
TEXT = 1, "Width={IW}" ,0 , 7 , 6 ,1 ,left, center
TEXT = 1, "Height={IH}" ,0 , 8 , 6 ,1 ,left, center
Result: Figure 40
```


Figure 40

INCLUDE

This directive includes another script file in the current script, as if it were copied and pasted. You can omit the path if the included file is in the same directory of the including script.

Syntax:
INCLUDE = "filename"

Examples:

```
INCLUDE = "C:\test\alpha.txt"
INCLUDE = beta.txt
```

Tip: you can choose a name (and path) from a Windows standard dialog, clicking on the button "Insert" and choosing the тепи voice "Include".

INPUTCHOICE

With this directive, the user can input a variable text that can be used as a label value, this text can be chosen between the values from a sequence. The text confirmed is stored to a file with the same name of the script and "ini" for extension, or can be saved to a specific configuration file, to be loaded in a subsequent execution.

Syntax:
INPUTCHOICE = "label", "description", "default", "values"
Parameters:
"label": the label for storing input text
"description": a text shown before the input box
"default": starting value for the label
"values": a sequence with the available choices
Example:

```
INPUTCHOICE = "color", "Choose a color, please:", "Red", "Red|Green|Blue"
```

This is the resulting input form:

INPUTLIST

With this directive, the user can input a variable text that can be used as a label value, this text can be chosen between the values from a sequence. The text confirmed is stored to a file with the same name of the script and "ini" for extension, or can be saved to a specific configuration file, to be loaded in a subsequent execution.

Syntax:
INPUTLIST = "label", "description", "default", "values"

Parameters:

"label": the label for storing input text
"description": a text showed before the input box
"default": starting value for the label
"values": a sequence with the available choices
Example:

```
INPUTLIST = "color", "Choose a color, please:", "Red", "Red|Green|Blue"
```

This is the resulting input form:

INPUTNUMBER

With this directive, the user can input a variable integer number that can be used as a label value, this number can be chosen between a minimum and a maximum value. The number confirmed is stored to a file with the same name of the script and "ini" for extension, or can be saved to a specific configuration file, to be loaded in a subsequent execution.

Syntax:
INPUTNUMBER = "label", "description", default, min, max
Parameters:
"label": the label for storing input number
"description": a text shown before the input box
default: starting value for the number
\min : minimum value for the number
max: maximum value for the number

Example:

```
INPUTNUMBER = "name", "Choose a number, please:", 5, 1, 10
```


INPUTTEXT

With this directive, the user can input a variable text that can be used as a label value. The text confirmed is stored to a file with the same name of the script and "ini" for extension, or can be saved to a specific configuration file, to be loaded in a subsequent execution.

Syntax:
INPUTTEXT = "label", "description", "default", flags
Parameters:
"label": the label for storing input text
"description": a text showed before the input box
"default": starting value for the label
flags: in this parameter, you can add a flag for a special effect, like:
F The program shows a button for browsing a file (to be added in the text field)
G The program shows a button for browsing a graphical file (to be added in the text field)
C The program shows a button for selecting a color
R The program shows a button for selecting a color gradient
Example:
INPUTTEXT = "name", "Input you name, please:", "John"

LABELMERGE

When you define a label that is already defined, the default behavior is that the current value (both single elements and sequences) replaces the existing. With this directive you change that behavior and appending instead the current value to the existing one (creating a longer sequence).

Syntax:

LABELMERGE $=$ switch

Parameter
switch: values accepted are:
ON a new sequence is created, appending the current value to the former one
OFF the current value replaces the former one (this is the default behavior)

Note: this setting is valid also for labels read from linked files.

LAYER

The directives between a structure LAYER...ENDLAYER are drawn in a separate card, then printed on the main card (or stored for a later use). Since the drawing directives like the RECTANGLE does not support alpha transparency, they can be drawn in this mode with a LAYER structure. If you specify the 5th parameter the layer is stored in memory (using that parameter as a name) and drawn later with a LAYERDRAW directive, if the name is not specified, the layer is drawn immediately.

Syntax:
LAYER $=$ alpha, offset x, offset y, angle, name, width, height, flags

Parameters:

alpha: level of transparency of the layer, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent)
offset \boldsymbol{x} : the horizontal offset of layer
offset y : the vertical offset of layer
angle: the angle of rotation of layer
name: the name of the layer
width: a zoom factor for stretching the image horizontally (100 is the original size)
height: a zoom factor for stretching the vertically the image (100 is the original size)
flags: you can specify one or more of these flags:
C use the layer in the canvas (the default is in the cards)
Example:

```
LAYER = 50
RECTANGLE = 1, 3, 0.5, 3, 8, #FF0000
FONT = Arial, 24, T, #000000
TEXT = 1, Alpha, 3, 5, 3, 5
ENDLAYER
```


LAYERDRAW

The directive draws a layer in a range of cards. The layer drawn is specified using its name (defined by the $5^{\text {th }}$ parameter in the LAYER directive), and it must have been created before with a LAYER...ENDLAYER structure. You can also specify a list of layers, separated by commas.

Syntax:

LAYERDRAW = "range", name, alpha, offset x, offset y, angle, width, height
Parameters:
"range": a set of cards
name: the name of the layer(s)
alpha: level of transparency of the layer, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent)
offset x : the horizontal offset of layer
offset \boldsymbol{y} : the vertical offset of layer
angle: the angle of rotation of layer
width: a zoom factor for stretching the image horizontally (100 is the original size)
height: a zoom factor for stretching the vertically the image (100 is the original size)

LIMIT

This directive fills four variables with the coordinates of latest drawn object's boundaries (in cm), from various command (*). You can use these variables in other commands.

Syntax:
LIMIT $=$ "range"
The four variables are:
PL (left)
PR (right)
PT (top)
PB (bottom)
Parameters:
"range": a set of cards
(*) This directive works with this list of directives:
BEZIER
BEZIERS
BUTTON
CIRCLE
COPY
ELLIPSE
GRID
HEXGRID
HTMLFILE
HTMLTEXT

ICONS
IMAGE
LINE
LINERECT
PATTERN
PIE
POLYGON
RECTANGLE
RHOMBUS
ROUNDRECT
RTFFILE
RTFTEXT
STAR
TEXT
TRACK
TRACKRECT
TRIANGLE

LINE

This directive draws a line from a point ($\mathrm{x} 1, \mathrm{y} 1$) to another point ($\mathrm{x} 2, \mathrm{y} 2$).
Syntax:
LINE $=$ "range", pos x 1, pos $\mathrm{y} 1, \operatorname{pos} \mathrm{x} 2$, pos y 2 , html color, thickness, pattern, end arrow, start arrow, end angle, start angle

Parameters:
"range": a set of cards
pos $\mathbf{x 1}$, pos y1: coordinates of first point (in cm)
pos $\mathbf{x 2}$, pos $\mathbf{y} \mathbf{2}$: coordinates of second point (in cm)
html color: color of the line, in the same format used for HTML (black, if not specified). You can also use a gradient thickness: thickness of the line (in cm), if omitted, the line is 1 pixel wide
pattern: a pattern for the line, this pattern can be composed of:
O dot
D dash
S space

These letters can be repeated, for example "OSDSOS" is a valid pattern
end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the line start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the line end angle: the angle (in degrees) of the spokes of the arrow at the end of the line start angle: the angle (in degrees) of the spokes of the arrow at the start of the line

Note: if end/start angle is negative, the arrow is drawn as a full triangle (with three lines instead of two).
Example:

```
LINE = 1, 1, 1, 5, 1, #0000FF#FF0000@0
LINE = 1, 1, 2, 5, 2, #0000FF#FFO000@0, 0.05
LINE = 1, 1, 3, 5, 3, #0000FF#FF0000@0, 0.1
```

```
LINE = 1, 1, 4, 5, 4, #0000FF#FFO000@0, 0.15
LINE = 1, 1, 5, 5, 5, #0000FF#FF0000@0, 0.2
LINE = 1, 1, 6, 5, 6, #0000FF#FF0000@0, 0.25
LINE = 1, 1, 7, 5, 7, #0000FF#FFO000@0, 0.3
LINE = 1, 1, 8, 5, 8, #0000FF#FFO000@0, 0.35, OSDSOS
Result: Figure 41
```

Figure 41

LINERECT

This directive draws a line from a vertex of a rectangle to the opposite vertex.
Syntax:
LINERECT = "range", pos x, pos y, width, height, html color, thickness, pattern, end arrow, start arrow, flags, end angle, start angle

Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm)
html color: color of the line, in the same format used for HTML (black if not specified). You can also use a gradient thickness: thickness of the line (in cm), if omitted, the line is 1 pixel wide pattern: a pattern for the line, this pattern can be composed of:

O	dot
D	dash
S	space

These letters can be repeated, for example "OSDSOS" is a valid pattern
end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the line start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the line flags: you can specify one or more of these flags to choose which lines to draw:

```
T top side
R right side
B bottom side
L left side
H}\mathrm{ middle horizontal
V middle vertical
D diagonal from top-left to bottom-right
G diagonal from top-right to bottom-left
```

If you do not specify a flag, the default is top-left to bottom-right diagonal.
end angle: the angle (in degrees) of the spokes of the arrow at the end of the line
start angle: the angle (in degrees) of the spokes of the arrow at the start of the line
Note: if end/start angle is negative, the arrow is drawn as a full triangle (with three lines instead of two).

Example:

```
LINERECT = 1, 1, 1, 4, 0, #0000FF#FF0000@0
LINERECT = 1, 1, 2, 4, 0, #0000FF#FF0000@0, 0.05
LINERECT = 1, 1, 3, 4, 0, #0000FF#FF0000@0, 0.1
LINERECT = 1, 1, 4, 4, 0, #0000FF#FF0000@0, 0.15
LINERECT = 1, 1, 5, 4, 0, #0000FF#FF0000@0, 0.2
LINERECT = 1, 1, 6, 4, 0, #0000FF#FF0000@0, 0.25
LINERECT = 1, 1, 7, 4, 0, #0000FF#FF0000@0, 0.3
LINERECT = 1, 1, 8, 4, 0, #0000FF#FF0000@0, 0.35, OSDSOS
Result: Figure 42
```


Figure 42

LINK

This directive is used to link data, written as a text file (CSV format) or a spreadsheet (with xls, xlsx, or ods extensions), with the current script. The data linked are referenced in the script as sequences. If the fields' names are omitted, the fields are referenced using the names contained in the first row of the file.

For text files, the character used to separate fields' data can be changed using the LINKSEP directive (see page 147). See also the LINKMULTI directive (page 144) if you need to duplicate the data rows, and the "Linked data editor" chapter (page 68).

For spreadsheet files, you can specify the sheet name after the filename, separated by a "!" character (if you omit the sheet name, the program reads the first sheet).

Syntax for text files:
LINK = "filename", "field1", "field2", ..."fieldN"
If you omit the "filename" parameter, the program reads the data directly from the script file, until it reads a ENDLINK directive (see page 105).

Syntax for spreadsheet files:
LINK $=$ "filename!sheet", "field1", "field2", ... "fieldN"
Note: accented or foreign characters are translated in HTML codes, to be used with HTMLTEXT (see page 123). If you want to disable this feature, add a LINKUNI=OFF line (see page 148) before the LINK line.

Note: if you indicate the same field names on multiple LINK lines, empty elements will be added to the sequences if those fields are not present in a sheet.

Tip: you can choose a name (and path) from a Windows standard dialog, clicking on the button "Insert" and choosing the menu voice "Link".

Tip: if you drag and drop a spreadsheet file in nanDECK's window, a LINK line is added with the path and filename of the spreadsheet.

If the spreadsheet file does not exist, the program asks if you want to create it (with the names of the fields specified in the line as the parameters field1, field2, etc.

Examples:

```
LINK = "C:\test\data01.txt"
LINK = "c:\test\data02.txt", size, speed, weight
LINK = "C:\test\data01.xls"
LINK = "C:\test\data01.xls!sheet2"
```

With the $2^{\text {nd }}$ example, in the script these fields are referenced as [size], [speed] and [weight].
Example of file "data02.txt":
1,2,3
4,5,6
7,8,9
$10,11,12$
The program will translate the data file in these sequences:

```
[size]=1|4|7|10
[speed]=2|5|8|11
[weight]=3|6|9|12
```

You can also link a Google Sheet document, using the ID of the file instead of "filename" parameter, but you must share it first, following these steps:

- select the file in Google Drive web page
- click the Share icon (the icon with the "little man" in top-right button bar)
- click the dropdown menu below "Link sharing on" in the window
- select a link sharing option, one of the "Anyone with the link..." option

Now Google shows you a link like this:
https://docs.google.com/spreadsheets/d/1s_p1gcL2BBO_zYIe_v8bADjWzFtc0hh_eY8DIw8OPfY/edit?usp=sharing
The ID of the sheet is the bold part, copy it and paste it in a nanDECK line like this:
LINK=1s_p1gcL2BBO_zYIe_v8bADjWzFtc0hh_eY8DIw8OPfY
You can also select one of the sheets, with this syntax:
LINK=ID!Sheet_name
Example:
LINK=1s_p1gcL2BBO_zYIe_v8bADjWzFtc0hh_eY8DIw8OPfY!Beta
But you must enable the web sharing, with these steps:

- open the spreadsheet in a browser
- select from menu File \rightarrow Publish to the Web
- click on "Publish" button

LINKADO

If you enable this option, the ADO libraries (ActiveX Data Objects) are used to open spreadsheet files (instead of the internal library). This option can be useful when files are open concurrently in other programs.

Syntax:
LINKADO = switch

Parameter:
switch: values accepted are:
ON uses the ADO libraries
OFF uses the internal libraries (the default)

LINKAUTO

If you enable this option, when a linked file is saved the related script is automatically validated and built.
Syntax:

LINKAUTO = switch
Parameter:
switch: values accepted are:
ON to enable the automatic build
OFF to disable the automatic build (the default)

LINKCACHE

If you enable this option, a Google linked sheet is saved to disk after the download to speed up subsequent executions.
Syntax:
LINKCACHE = switch
Parameter:
switch: values accepted are:
ON the Google sheet is saved to disk
OFF the Google sheet is always downloaded (the default)

LINKCOLOR

This directive is used to create a sequence with the colors or font information from spreadsheet's cells; it must be used before the LINK directive (see page 140).

Syntax:
LINKCOLOR = label, "field", flag
Parameters:
label: is the name of the sequence
"field": is the name of the field from the spreadsheet
flag: it specifies if the color read is from the background or the font, if not specified is read from the background:

F	font color
B	background color
N	font name
S	font size

LINKENCCSV

This directive is used to specify which characters are replaced with $\backslash \mathbf{n} \backslash$ encoding (where \mathbf{n} is the ASCII code) when read from a csv file with the LINK directive (see page 140). As default, there are not characters encoded.

Syntax:

LINKENCCSV = string

LINKENCODE

This directive is used to specify which characters are replaced with $\backslash \mathbf{n} \backslash$ encoding (where \mathbf{n} is the ASCII code) when read from a spreadsheet file with the LINK directive (see page 140). As default, characters encoded are [] \{ \}.

Syntax:
LINKENCODE $=$ string

LINKEXEC

This directive is used to specify that one or more fields in a spreadsheet linked with the LINK directive (see page 140) are used to store commands in nanDECK's scripting language (commands that are executed as they would be read from the current script). Note that if you use directives that are related to others (like FONT/TEXT) they must reside before the LINK line.

Syntax:
LINKEXEC $=$ field 1, field $2, \ldots$, field N

LINKFILL

This directive is used when you have a schema on several rows in a spreadsheet and you want to straighten it in a single row (using the first line to specify the total number of columns that will be filled with the cells); this directive must be used before the LINK command (see page 140).

Syntax:
LINKFILL $=$ switch, columns

Parameter:
switch: values accepted are:
ON to enable the redistribution of the cells
OFF to disable the redistribution of the cells (the default)
columns: when there are empty cells, you can use this parameter to specify the actual number of columns

LINKFILTER

This directive is used to filter the rows in a linked file. You can specify more than one LINKFILTER directive for a linked file and must be used before the LINK directive (see page 140).

Syntax:
LINKFILTER $=$ CLEAR \mid field operator value
Parameters:
field: is the name of the field for the filter
operator: these are the possible operators used for the filter:
$=\quad$ equal
$>$ major
$<$ minor
$>=\quad$ major or equal

```
<= minor or equal
<> different
@ contained into
# not contained into
value: is the value used for the filter
```

Example:
Linked file:
Name, count
Alpha, 1
Beta, 2
Gamma, 3

With this script line:

```
LINKFILTER = count < 3
LINK = linked.csv
```

The resulting linked file will be:

```
Name, count
Alpha, 1
Beta, 2
```

If you want to clear all filter, you can use this directive with "CLEAR" parameter:
LINKFILTER = CLEAR

LINKFONT

This directive adds a couple of HTML tag when a different font is read from a cell in a linked spreadsheet; this directive must be used before the LINK command (see page 140).

Syntax:
LINKFONT = switch
Parameter:
switch: values accepted are:
ON to enable the font detection
OFF to disable the font detection (the default)

LINKMULCOPY

This directive enables/disables the copy of identical card when a linked file is preceded by the LINKMULTI directive (see page 145); this directive must be used before the LINK command (see page 140).

Syntax:

LINKMULCOPY = switch
Parameter:
switch: values accepted are:
ON to enable the copy of identical cards (the default)
OFF to disable the copy, each card is created from the script, even if it is identical to prior cards

LINKMULDIS

When a linked file is used with a LINKMULTI directive (see page 145), you can specify with this directive one or more fields that are not replicated; instead of a replica, a single element in a sequence field is taken for each record. It must be used before the LINK directive (see page 140).

Syntax:
LINKMULDIS $=$ "field1", "field2", ... "fieldN"
For example, if this is a linked file:

```
name, count, data
Alpha, 1, a
Beta, 2, b|c
Gamma, 3, dle
```

And you add these lines to your script:

```
LINKMULTI = count
LINKMULDIS = data
LINK = linked.cSV
```

The resulting linked file will be:

```
name, count, data
Alpha, 1, a
Beta, 2, b
Beta, 2, c
Gamma, 3, d
Gamma, 3, e
Gamma, 3, d
```

Note: if a sequence is smaller than the requested number of replicated rows, it is extended (like the d|e sequence in the example, extended to $\boldsymbol{d}|\boldsymbol{e}| \boldsymbol{d}$ for the three rows).

Note: if you use the \S symbol in the linked field, it gives you a count starting from one on each new row multiplied by LINKMULTI.

LINKMULTI

This directive is used to specify a field, used for identifying a multiplier for a line in a linked file. It must be used before the LINK directive (see page 140) and it must refer an existing field in the linked file (or a field specified in the LINK directive). Note that the default behavior is to copy the $1^{\text {st }}$ cart over the others, if instead you need that all the cards are created, use a LINKMULCOPY=OFF line before the LINKMULTI (see page 144).

Syntax:
LINKMULTI $=$ field
The field parameter must be a column in the spreadsheet and must contain a number or a special syntax that specifies another field to split into multiple segments, with one of these syntaxes:
field/num splits the contents of the field into segments, each of num characters
field $\backslash n u m \quad$ splits the contents of the field into segments, each of num characters, and words are not splitted field\num\char splits the contents of the field into segments, each of num characters, and words (strings separated by char) are not splitted

With this special syntax you can also use three counters:
$\S \quad$ indicates the number of the current segment

For example, if this is a linked file:

```
Name, count
Alpha, 1
Beta, 2
Gamma, 3
```

And you add these lines to your script:

```
LINKMULTI = count
LINK = linked.csv
```

The resulting linked file will be:

```
Name, count
```

Alpha, 1
Beta, 2
Beta, 2
Gamma, 3
Gamma, 3
Gamma, 3

LINKNEW

This directive is used to specify a string, used in substitution for a carriage return read from a spreadsheet file with the LINK directive (see page 140). If you do not specify a LINKNEW directive in your script file, every carriage return read is replaced by $\backslash \mathbf{1 3} \backslash$.

Syntax:
LINKNEW $=$ string
If you want to use a linked file with an HTMLTEXT directive, you should convert all the carriage returns with the corresponding HTML code, i.e.:

```
LINKNEW = <br>
```


LINKRANDOM

This directive enables/disables the randomization of lines read with a LINK directive (see page 140), it must be used before the LINK line.

Syntax:
LINKRANDOM $=$ switch
Parameter:
switch: values accepted are:
ON To enable randomization
OFF To disable randomization (the default)
Example:
LINKRANDOM = ON
LINK = linked.csv

LINKSEP

This directive is used to specify the character used in a link file to separate fields. It must be used before the LINK directive (see page 140).

If this command is omitted, is used the default separator, a comma ",".
Syntax:

LINKSEP $=$ separator

You can also specify a special character with the syntax $\backslash \mathbf{n} \backslash$. For example, for a tab you can use this line:

```
LINKSEP = \9\
```

Example:

```
LINKSEP = ;
LINK = linked.csv
```


LINKSPLIT

This directive is used to read each line from a linked file as two different lines. It must be used before the LINK directive (see page 140).

Syntax:
LINKSPLIT = every row, odd rows, even rows
The fields specified in the 1 st parameter are duplicated in two rows, those specified in the 2 nd parameter are put only in the 1 st row, and those specified in the 3 rd parameter are put only in the 2nd row. Every parameter can contain more than one field, separated by a pipe ("|" symbol).

LINKSTYLES

This directive is used to specify alternatives for HTML tags when reading formats from a spreadsheet file. It must be used before the LINK directive (see page 140).

If this command is omitted, the standard HTML tags are used instead.
Syntax:
LINKSTYLES = bold on, bold off, italic on, italic off, strikeout on, strikeout off, underline on, underline off, superscript on, superscript off, subscript on, subscript off

LINKTAB

This directive is used to specify a string, used in substitution for a tabulation read from a spreadsheet file with the LINK directive (see page 140). If you do not specify a LINKTAB directive in your script file, every tabulation read is deleted.

Syntax:
LINKTAB $=$ string

LINKTRIM

This directive enables/disables the deletion of empty rows at the end of a spreadsheet file; this directive must be used before the LINK command (see page 140).

Syntax:
LINKTRIM $=$ switch

Parameter:

switch: values accepted are:
ON to enable the deletion of empty rows (the default)
OFF to disable the deletion of empty rows

LINKUNI

This directive enables/disables the conversion of Unicode characters when read from a spreadsheet file (to be used with an HTMLTEXT directive, see page 123); this directive must be used before the LINK command (see page 140).

Syntax:
LINKUNI = switch

Parameter:
switch: values accepted are:
ON to enable the Unicode conversion (the default)
OFF to disable the Unicode conversion

LOADPDF

This directive draws a page(s) taken from a PDF file into a range of cards. If you want to know how many pages are in the file, use the PDFPAGES function (see page 38).

Syntax:
LOADPDF = "range", "filename", pos x , pos y , width, height, number, dpi, angle, flags
Parameters:
"range": a set of cards
"filename": name of the PDF file
$\boldsymbol{p o s} \mathbf{x}$: horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the text's rectangle (in cm)
height: height of the text's rectangle (in cm)
number: the page to be printed, if not specified the default is 1
$\boldsymbol{d p i}$: the resolution of the image, if not specified the default is 300
angle: angle of PDF rotation, can be 0 for no rotation
flags: one or more of these flags
I the PDF is converted using the internal library (the default)
E the PDF is converted using Ghostscript (the exe path is set in the Gswin32c option in the "Config" button)
Example:
LOADPDF $=1-10$, "nandeck-manual.pdf", 0, $0,100 \%$, 100\%, \{§\}

LOG

This directive appends a string in a text file, if the file does not exist, it will be created. If you do not specify a string, the file is deleted instead.

Syntax:
LOG = "range", "filename", "string"
Parameters:
"range": a set of cards
"filename": name of the file (if is empty, it is written to the log windows)
"string": the string that will be written in the text file (if you specify "nandeck.log", it is written the content of the log windows)

Example:
LOG = 1-10, "log.txt", "Card nº \{§\}"

MACRO

With this directive, you can create new procedures, to be used like other directives. The END directive marks the end of the new procedure, and you can specify a list of parameters, delimited with parenthesis, to be reused in the script block. You can also specify a default value for each parameter, then if you did not use a parameter when you call a macro, the default value is used instead. In a macro, you can recall another macro, but you cannot create recursive macros.

Syntax:
MACRO $=$ name, (parameter1)value1, (parameter2)value2, \ldots
END

Example:

```
[black] = #000000
[red] = #FF0000
[blue] = #0000FF
;
MACRO = dot, (rng), (x), (y), (r)
    ELLIPSE = (rng), (x)-(r), (y)-(r), (r)*2, (r)*2, [red][blue]@0
END
;
MACRO = shadow, (rng), (x), (y), (w), (h), (txt), (col)
    FONTRANGE = (rng), Arial, 20, B, [black]
    TEXT = (rng), "(txt)", (x)+0.08, (y)+0.08, (w), (h), CENTER, CENTER, 0, 50
    FONTRANGE = (rng), Arial, 20, BT, (col)
    TEXT = (rng), "(txt)", (x), (y), (w), (h), CENTER
```

END
;
MACRO = card, (rng), (txt), (x), (y), (w), (h), (col)
shadow $=(r n g),(x),(y),(w),(h),(t x t),(c o l)$
dot $=(r n g),(x),(y), 0.5$
dot $=($ rng $),(x)+(w),(y), 0.5$
dot $=(r n g),(x),(y)+(h), 0.5$
dot $=(r n g),(x)+(w),(y)+(h), 0.5$
END
;
card = 1, "Test1", 1, 1, 4, 3, [red][blue]@0
card = 1, "Test2", 1, 6, 2, 2, [red][blue]@0

Figure 43

MANDALA

This directive draws a random image in a rectangle in a set of cards.
Syntax:
MANDALA $=$ "range", pos x , pos y , width, height, glyphs, angles, segments, min width, max width, min length, max length, color, red, green, blue

Parameters:
"range": a set of cards
pos x : horizontal position (in cm)
pos y: vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm)
glyphs: the number of images created and superimposed (default 8)
angles: the max number of radial symmetries (default 16)
segments: the number of connected segments (default 32)
min width: the starting width of a segment (in cm)
max width: the ending width of a segment (in cm)
min length: the random minimum length of a segment (in cm)
max length: the random maximum length of a segment (in cm)
color: one or more color to be used in the image (if not specified, a random color is used)
red: variability of red component in subsequent colors (from 0 to 255)
green: variability of green component in subsequent colors (from 0 to 255)
blue: variability of blue component in subsequent colors (from 0 to 255)
Example:
MANDALA $=1,0,0,6,9$
Result: Figure 45

MARGINS

This directive sets the page's margins. If the directive MARGINS is not specified, the standard margins are 1 cm (each).
Syntax:

MARGINS = left margin, right margin, top margin, bottom margin, odd horiz, odd vert., even horiz., even vert.
Parameters:
left margin: left margin (in cm)
right margin: right margin (in cm)
top margin: top margin (in cm)
bottom margin: bottom margin (in cm)
odd horiz: horizontal margins offset in odd pages (in cm)
odd vert.: vertical margins offset in odd pages (in cm)
even horiz. : horizontal margins offset in even pages (in cm)
even vert.: vertical margins offset in even pages (in cm)
Example:
MARGINS $=2,2,1,1$

MERGEPDF

This directive creates a new PDF file, you can specify a file or a sequence of files as sources, with related page ranges (the syntax for a range is, for example, " $1-10,15,18,20-30 "$), if the result file is not already present, it is created (otherwise, it is overwritten).

Syntax:
MERGEPDF = "result file", "source file", "source range", rotation
Parameters:
"result file": the file that is created
"source file": a file or a sequence of files taken as the source of the resulting file
"source range": a range or a sequence of ranges
rotation: an angle or a sequence of angles (only $0,90,180$, or 270 are accepted)
Example:
MERGEPDF = "result.pdf", "source1.pdf|source2.pdf", 1-10|11-20

MOSAIC

This directive reads all the images in a folder and arrange them in a rectangle. If the images fill more than one instance of that rectangle, you can use a page parameter to specify which rectangle is drawn from all the possible choices.

Syntax:
MOSAIC = "range", "folder", pos x , pos y , width, height, page, flags, zoom
Parameters:
"range": a set of cards
"folder": a folder to search, eventually with a file pattern
pos \mathbf{x} : horizontal position (in cm)
$\boldsymbol{p o s} \mathbf{y}$: vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm)
page: if not specified, is equal to 1
flags: one or more of these flags
H the schema is mirrored horizontally
V the schema is mirrored vertically
S the images are read also in the subfolders
zoom: if not specified, is equal to $\mathbf{1 0 0}$
Example:
MOSAIC = 1, "images*.png", 0, 0, 0, 100\%

NANDECK

This directive executes another instance of the program, loads a script, render all the cards, and saves them to disk. Then the execution continues with the next line. This directive is executed only one time with each run of the script.

Syntax:
NANDECK = "source", output, "path", dpi, oversample, "range"
Parameters:
"source": another nanDECK script
output: this flag specifies the format of the saved images; you can choose between:
BMP
JPG
PNG
GIF
GIFA
TIF
PDF
"path": the path for the saved images, if is not specified, the images are saved in the save folder of the source
$\boldsymbol{d p i}$: the resolution for the images (see page 63), the default is 300
oversample: the value for the oversample (see page 153), the default is 1 (no oversample)
"range": you can specify a range if you do not want to render all the deck
Example:
NANDECK = "C:\scripts\test.txt", PNG, "C:\output"

NEXT

This directive closes a FOR...NEXT loop (see page 113).
Syntax:
NEXT
Parameters:

ORIGIN

With this directive you can specify values to be added to the horizontal and vertical coordinates of all graphic directives in a range of cards. If you use percentages for size, you can use the 3 rd and 4th parameters to specify what $\%$ is the size of a card, or the 5 th and 6th parameters to specify what size is 100%.

Syntax:
ORIGIN $=$ range, pos x, pos y , hor. perc, ver. perc., width.. height
Parameters:
"range": a set of cards
pos \mathbf{x} : the offset value for all horizontal coordinates
pos \mathbf{y} : the offset value for all vertical coordinates
hor. perc.: this value is the $\%$ of the width of a card (the default is 100)
ver. perc.: this value is the $\%$ of the height of a card (the default is 100)
width: this value is the size of the card equal to a width of 100%
height: this value is the size of the card equal to a height of 100%
Example:
ORIGIN = 1-10, 0.5, 0.5

OVERSAMPLE

If you specify a parameter greater than one, the program works with cards $2 \mathrm{x}, 3 \mathrm{x}$, or greater than the size specified, and then resize them to the original size, using the filter specified with IMAGEFILTER directive (see page 131). It is useful to smooth every element of the cards, especially with small size one.

Syntax:
OVERSAMPLE $=$ number

Example:
OVERSAMPLE = 2

With this directive, the memory required (and the rendering time) is much more than usual.

PAGE

This directive sets the paper' size and orientation (for printing and PDF creation).

Syntax:

PAGE = width, height, orientation, flags, html color, "no border range", edge color, edge left, edge right, edge top, edge bottom

Parameters:

width: page width (in cm)
height: page height (in cm)
orientation: the orientation can be chosen between:
LANDSCAPE horizontal
PORTRAIT vertical
flags: in this parameter, you can specify a special behavior for pages, possible values are:
H the cards are horizontally centered
V the cards are vertically centered
E guides are not printed on even pages
O guides are not printed on odd pages
M the horizontal margins are mirrored in even pages
D the page is centered (with H/V flags) without considering the edges
L guides are not printed in the left half of the page
R guides are not printed in the right half of the page
T guides are not printed in the top half of the page
B guides are not printed in the bottom half of the page
html color: paper color, in the same format used for HTML; you can also use a sequence of two or more colors, if you want a different color on each page
no border range: if a range is specified, the border is not printed on these cards
edge color: edge color, in the same format used for HTML; you can also use a sequence of two or more colors if you want a different color on each page.
edge left: the horizontal width of a colored area at the left edge of the page
edge right: the horizontal width of a colored area at the right edge of the page
edge top: the vertical height of a colored area at the top edge of the page
edge bottom: the vertical height of a colored area at the bottom edge of the page.
If the directive PAGE is not specified, the standard is 21×29.7 (A4), portrait, no flags
Example:
PAGE = 21, 29.7, LANDSCAPE

PAGEFONT

This directive changes the font's characteristics for page's headers (see page 116) and footers (see page 112). If you do not specify this directive in your script, it will be used Arial 10, black.

Syntax:
PAGEFONT = "font name", font size, style, html color

Parameters:

"font name": character's name (string)
font size: character's size (integer), in typographical points $=1 / 72$ of an inch
style: character' style, values accepted are:

```
B bold
I italic
U underline
```

html color: character's color, in the same format used for HTML
Examples:
PAGEFONT = Arial, 10, B, \#000000
PAGEFONT = "Times new roman", 16, IU, \#FFOOOO

PAGEIMAGE

This directive draws an image centered on all the printed pages (like a watermark).
Syntax:
PAGEIMAGE = "image file", flags
Parameters:
"image file": the image to be printed
flag: one or more of the following flags:
P proportional
E do not print on even pages
O do not print on odd pages
Example:
PAGEIMAGE = watermark.png, P

Note: use only .bmp or .png images

PAGESHAPE

This directive draws lines, rectangles, and ellipses directly in a page (therefore there is not a range parameter, and a 100% here refers to the whole page, not to the card).
Syntax:
PAGESHAPE $=$ pos x, pos y , width, height, flags, html color
Parameters:
pos \mathbf{x} : horizontal position (in cm)
$\operatorname{pos} \mathbf{y}$: vertical position (in cm)
width: width of the shape (in cm)
height: height of the shape (in cm)
flags: one or more of the following flags:
A draw a rectangle
I draw an ellipse
S set solid background
M set empty background
$0 \quad$ set solid edge
1 set dotted edge
2 set dashed edge

3 set dash+dot pattern for edge
4 set dash + dot + dot pattern for edge
$\mathrm{T} \quad$ draw a line in the top side of the rectangle
R draw a line in the right side of the rectangle
B draw a line in the bottom side of the rectangle
L draw a line in the left side of the rectangle
H draw a horizontal line in the middle of the rectangle
V draw a vertical line in the middle of the rectangle
D draw a diagonal line in the rectangle
G draw a diagonal line (reversed) in the rectangle
E do not draw the shape on even pages
html color: color of the shape, in the same format used for HTML

Example:

```
PAGESHAPE = 1, 1, 19, 27.7, MA, #0000FF
PAGESHAPE = 0.25, 0.25, 0.5, 0.5, SI, #FF0000
PAGESHAPE = 20.25, 0.25, 0.5, 0.5, SI, #FF0000
PAGESHAPE = 0.25, 28. 95, 0.5, 0.5, SI, #FF0000
PAGESHAPE = 20.25, 28.95, 0.5, 0.5, SI, #FF0000
```


PATTERN

This directive prints repeated images in a rectangular area. If you want to print different images instead, you can use the ICONS directive (see page 125).

Syntax:
PATTERN = "range", "image file", repetition, pos x , pos y , width, height, obj width, obj height, angle, flags, horizontal alignment, vertical alignment, alpha

Parameters:
"range": a set of cards
"image file": an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif
repetition: the number of images printed (you can also use a sequence here)
$\boldsymbol{p o s} \mathbf{x}$: horizontal position (in cm)
$\boldsymbol{p o s} \mathbf{y}$: vertical position (in cm)
width: width of the rectangle in which the images are printed (in cm)
height: height of the rectangle in which the images are printed (in cm)
obj width: width of the single image to be printed (in cm)
obj height: height of the single image to be printed (in cm)
angle: angle of image rotation, if not specified it is assumed to be 0 (for no rotation)
flags: in this parameter, you can specify a special behavior for images, possible values are:

```
T Transparent
A Anti-aliasing
R Reverse, reversing the filling order of pattern's elements (from bottom to top)
N Use PNG transparency
P Proportional
```

horizontal alignment: the images' horizontal alignment in the rectangle, values accepted are:

LEFT	left aligned
CENTER	centered (the default)
RIGHT	right aligned

vertical alignment: the images' vertical alignment in the rectangle, values accepted are:
TOP top aligned
CENTER centered (the default)
BOTTOM bottom aligned
alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent)

Example:

```
[img] = "c:\images\dot_red.gif"
RECTANGLE = 1, 0, 0, 6, 5, #0000FF
PATTERN = 1, [img], 5, 0, 1, 6, 3, 1.5, 1.5, 0, T, CENTER, CENTER
Result: Figure 45
```


PIE

This directive draws a pie slice in a set of cards.

Figure 45

Syntax:
PIE = "range", pos x , pos y , width, height, start angle, end angle, html color, html color, thickness
Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the pie (in cm)
height: height of the pie (in cm)
start angle: start angle of pie ($0=$ north, $90=$ east, $180=$ south, $270=$ west $)$
end angle: end angle of pie ($0=$ north, $90=$ east, $180=$ south, $270=$ west $)$
html color: border color of the pie, in the same format used for HTML, you can also specify a gradient
html color: inner color of the pie, in the same format used for HTML, if not specified the inner color is the same of border color. You can also specify "EMPTY" for a hollow pie or a gradient
thickness: thickness of the border of the pie (in cm), if omitted, the pie's border is 1 pixel wide

Figure 46

Figure 47

Figure 48

PNGCOMP

This directive sets the compression level for png images saved with a SAVE directive (see page 164).
Syntax:
PNGCOMP = "range", compression, filter
Parameters:
"range": a set of cards
compression: the level of compression, from 0 (none) to 9 (maximum)
filter: the method used to evaluate the difference when applying compression; can be chosen from:
NONE
SUB
UP
AVERAGE
PAETH

POLY

This directive stores a point on a path that will become an irregular polygon; the polygon will be closed and drawn when you also specify a color.

Syntax:
POLY $=$ "range", pos x, pos y , html color, html color, thickness
Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position of the point (in cm)
pos \mathbf{y} : vertical position of the point (in cm)
html color: border color of the polygon, in the same format used for HTML, you can also specify a gradient
$\boldsymbol{h t m l}$ color: inner color of the polygon, in the same format used for HTML, if not specified the inner color is the same of border color. You can also specify "EMPTY" for a hollow polygon or a gradient
thickness: thickness of the border of the polygon (in cm), if omitted, the polygon's border is 1 pixel wide
Example:

```
POLY = 1, 1, 1
POLY = 1, 5, 1
POLY = 1, 4, 4.5
POLY = 1, 5, 8
POLY = 1, 1, 8
POLY = 1, 2, 4.5, #404040#D0D0D0#404040@0, #0000FF#00FFFF@90, 0.3
```


POLYGON

This directive draws a polygon in a set of cards.
Syntax:

POLYGON = "range", pos x , pos y , width, height, num sides, angle, html color, html color, thickness, start side, end side, zoom, factor start, factor end, radius start, radius end

Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the polygon (in cm)
height: height of the polygon (in cm)
num sides: number of sides ($3=$ triangle, $4=$ square, $5=$ pentagon, and so on...)
angle: angle of rotation (in degrees)
html color: border color of the polygon, in the same format used for HTML, you can also specify a gradient
html color: inner color of the polygon, in the same format used for HTML, if not specified the inner color is the same of border color. You can also specify "EMPTY" for a hollow polygon or a gradient
thickness: thickness of the border of the polygon (in cm), if omitted, the polygon's border is 1 pixel wide start side: the polygon is drawn starting from this side; it omitted is equal to 1 end side: the polygon is drawn until this side, if omitted is equal to num sides
zoom: if not specified, is equal to $\mathbf{1 0 0}$
factor start: if specified, each edge is drawn as a bezier curve, using this parameter as the offset factor along the tangent of the start point handle
factor end: if specified, each edge is drawn as a bezier curve, using this parameter as the offset factor along the tangent of the end point handle
radius start: if specified, each edge is drawn as a bezier curve, using this parameter as the offset factor along the radius of the start point handle
radius end: if specified, each edge is drawn as a bezier curve, using this parameter as the offset factor along the radius of the end point handle

Note: If you use curved edges, the interior of the polygon is not filled
Examples:

```
POLYGON = 1, 1, 1, 4, 7, 3, 45, #00FF00
Result: Figure 49
POLYGON = 1, 1, 1, 4, 7, 4, 0, #FFOOFF, EMPTY, 0.1
Result: Figure 50
POLYGON = 1, 1, 1, 4, 7, 5, 0, #FF0000#0000FF@90
Result: Figure 51
```


Figure 49

Figure 50

Figure 51

PRINT

This directive restricts the deck creation to the specified cards.
Syntax:

PRINT = "range" | DUPLEX | FOLD | COMPARE

Parameters:
"range": a range of cards. If you specify the DUPLEX parameter, the range is built using information from the DUPLEX directive (see page 102), if you specify the FOLD parameter, the range is built using information from the FOLD directive (see page 108), if you specify the COMPARE parameter, is used the range created with a COMPARE directive (see page 95).

Examples:

```
PRINT = "1-3, 8, 10-12"
PRINT = DUPLEX
```


QRCODE

This directive draws a QR Code (useful to be read with a smartphone) in a set of cards.
Syntax:
QRCODE = "range", "text", pos x, pos y , width, height, html color, html color
Parameters:
"range": a set of cards
"text": the text written in the QR Code
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the QR Code (in cm)
height: height of the QR Code (in cm)
html color: color of the QR Code, in the same format used for HTML, black if not specified. You can also specify a gradient
html color: color of the background, in the same format used for HTML, white if not specified. You can also specify a gradient

Example:
QRCODE = "1-10", "http://www.nandeck.com", 1, 1, 4, 4

RANGE

The parameter specifies several cards that is added to all subsequent ranges. This directive is useful to merge two scripts that draws cards in the same range, without having to rewrite all the ranges of the $2^{\text {nd }}$ script.

Syntax:
RANGE $=$ offset
Example:

```
RECTANGLE = 1-2, 0, 0, 100%, 100%, #FF0000
RANGE = 2
RECTANGLE = 1-2, 0, 0, 100%, 100%, #0000FF
```


RECTANGLE

This directive draws a rectangle in a set of cards.

Syntax:
RECTANGLE $=$ "range", pos x, pos y , width, height, html color, html color, thickness
Parameters:
"range": a set of cards
$\boldsymbol{\operatorname { p o s }} \mathbf{x}$: horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm)

Figure 52

Figure 53

Figure 54

RENDER

With this directive, the program renders only a range of cards (from $1^{\text {st }}$ to $2^{\text {nd }}$ parameter or using a range in the $4^{\text {th }}$ parameter). If omitted, all the deck is rendered. If a name is specified, the range is associated with this string, and can be selected on a window, for a faster switch on multiple ranges.

Syntax:
RENDER = first card, last card, name, range
Examples:

```
RENDER = 10, 20
RENDER = 1, 10, "full deck"
RENDER = 1, 5, "first half"
RENDER = 6, 10, "second half"
```


RHOMBUS

This directive draws a rhombus in a set of cards.
Syntax:

RHOMBUS = "range", pos x, pos y, width, height, html color, html color, thickness
Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the rhombus (in cm)
height: height of the rhombus (in cm)
html color: border color of the rhombus, in the same format used for HTML, you can also specify a gradient
html color: inner color of the rhombus, in the same format used for HTML, if not specified the inner color is the same of border color. You can also specify "EMPTY" for a hollow rhombus or a gradient
thickness: thickness of the border of the rhombus (in cm), if omitted, the rectangle's border is 1 pixel wide

Examples:
RHOMBUS $=1,1,1,4,7, \# 00 F F 00$
Result: Figure 55

ROUNDRECT

Figure 55

This directive draws a rounded rectangle in a set of cards.
Syntax:
RECTANGLE $=$ "range", pos x, pos y , width, height, html color, html color, thickness, round width, round height, flags Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the rounded rectangle (in cm)
height: height of the rounded rectangle (in cm)
html color: border color of the rounded rectangle, in the same format used for HTML, you can also specify a gradient
$\boldsymbol{h t m l}$ color: inner color of the rounded rectangle, in the same format used for HTML, if not specified the inner color is the same of border color. You can also specify "EMPTY" for a hollow rounded rectangle or a gradient
thickness: thickness of the border of the rounded rectangle (in cm), if omitted, the rectangle's border is 1 pixel wide round width: rounding horizontal factor for the rectangle (1 for a circle), if omitted the default is 5
round height: rounding vertical factor for the rectangle (1 for a circle), if omitted the default is equal to horizontal factor parameter (or 5 if the latter is missing)
flags: you can specify one or more flags, chosen between:

F The corners are calculated as specified in the prior two parameters (the default)
R The last two parameters are the radius (horizontal and vertical) of the corners' ellipses
Note that if you want rounded corners with the same aspect, the horizontal/vertical factors must have a ratio proportional to the width/height of the rectangle.

Examples:

```
ROUNDRECT = 1, 1, 1, 4, 7, #OOFFO0
Result: Figure 56
```

Figure 56

Figure 57

Figure 58
$\boldsymbol{p o s} \mathbf{x}$: horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the text's rectangle (in cm)
height: height of the text's rectangle (in cm)
html color: background color for text
angle: angle of text rotation, you must specify 0 for no rotation
flags: you can specify one or more flags, chosen between:
T Transparent background for text
H Horizontal mirror
V Vertical mirror
alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent).

Example:

```
RTFFILE = 1, "c:\temp\document.rtf", 0, 0, 6, 8, #FFFF80, 0
Result: Figure 59
```

-orem ipsum dolor sit amet, consectetuer adipiscing elit. Lorem
ipsum dolor sit amet, consectetuer asum dolor sit amet, consectetuer sit amet, consectetuer adipiscing sit amet, consectetuer acipiscing
elit. Lorem ipsum dolor sit amet, eit. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Lorem adipiscing elit. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. ○○。

RTFTEXT

This directive prints a text, using RTF format, in the cards specified by a range. This directive is useful if you want to print a text with multiple size, font, attributes, colors and so on. For expression, you must include them in double curly parentheses $\{\{\ldots\}\}$.

Syntax:

RTFTEXT = "range", "text", pos x, pos y, width, height, html color , angle, flags, alpha
Parameters:
"range": a set of cards
"text": the RTF text to be printed
$\boldsymbol{\operatorname { p o s }} \mathbf{x}$: horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the text's rectangle (in cm)
height: height of the text's rectangle (in cm)
html color: background color for text
angle: angle of text rotation, you must specify 0 for no rotation
flags: you can specify one or more flags, chosen between:
T Transparent background for text
H Horizontal mirror
V Vertical mirror
alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent).

Example:

```
RTFTEXT = 1, "{\rtf normal\par{\b bold}\par{\i italic}\par{\ul
underline}}", 0, 0, 6, 6, #FFFF80, 0
Result: Figure 60
```


Figure 60

SAVE

This directive saves the full or partial image(s) of card(s) specified by a range in a file(s). You can use expressions like $\{\S\}$ to specify different filenames for different cards in the range. The image can also be loaded in another card with IMAGE directive (see page 128). The formats you can use for the image are BMP, JPG, PNG, and GIF, if you did not specify an extension for the filename, the default is BMP. If you did not specify a size, the default is all the cards.

Syntax:
SAVE = "range", "image file", pos x, pos y, width, height, transparent color, "zipfile", "mask file", width pixels, height pixels, bitplanes, flags, level

Parameters:

"range": a set of cards
"filename": the name of the file created
pos \boldsymbol{x} : horizontal start of saved area (in cm)
pos \boldsymbol{y} : vertical start of saved area (in cm)
width: width of the saved area (in cm)
height: height of the saved area (in cm)
transparent color: for PNG and GIF, if this parameter is specified, the file is saved with this color as transparent, for PNG files you can also specify more than one color (for example \#0000FF\#00FF00 for two colors) and add a level of transparency, in the format \#xxyyyyyy, where $\mathrm{xx}=$ transparency level (from $00=$ full transparent to $\mathrm{FF}=$ full solid) and yyyyyy = color. Another format accepted is \#xxyyyyyyzzz, where zzz is a number that is used as "likeness" of the color to be treated as transparent. Finally, you can also specify a G at the end to proportionally adjust the level of transparency to the level of likeness.
"zipfile": if this parameter is specified, the image file is added to this zip file
"mask file": if this parameter is specified (a PNG image), is used as transparency mask for the saved image (note that in this case the "transparent color" is not used)
width pixels: the width of the saved images, in pixels
height pixels: the height of the saved images, in pixels
bitplanes: sets the depth of the saved image, and can be set equal to:

24	16 million of colors (the default)
16	65536 colors
8	256 colors
4	16 colors

flags: you can specify one or more flags, chosen between:
A use an alternate library for saving images in jpeg format
F the file is deleted at the end of the build phase (useful for temporary files)
S the rectangle is shrunk until pixels with a different color than the one in the upper left corner are found, then the image is saved enlarged to the size width x height
K the rectangle is shrunk until pixels with a different color than the one in the upper left corner are found, then the image is saved at the found size
$\mathrm{R} \quad$ the image is rotated 90°
T the image is rotated 180°
L the image is rotated 270°
level: this parameter is used with S flag, and specifies the difference from the color of the upper left corner and the color that defines the rectangle (if not specified it is considered zero, i.e., the colors must be the same)

Examples:

```
SAVE = 1-3, "card{$}.bmp", 0, 0, 6, 9
RECTANGLE = 1, 1, 1, 4, 7, #0000FF#FF0000@90
RECTANGLE = 1, 0, 0, 6, 9, #000000, EMPTY, 0.5
SAVE = 1, "temp.bmp", 0, 0, 6, 9
IMAGE = 1, "temp.bmp", 3, 0, 3, 4.5, 0, A
Result: Figure 61
```


Figure 61

SAVEGIFA

This directive saves the full deck of cards in an animated GIF file specified in "filename" parameter. Note that you can use only one of this kind of directives in a script (only the last is considered).

Syntax:
SAVEGIFA $=$ "filename", msec, flags, transparent color

Parameters:

"filename": the name of the file to be created (.gif extension)
$\boldsymbol{m s e c}$: the delay between each frame (the default is $1000=1$ second)
flags: one or more of the following flags
$\mathrm{O} \quad$ all the images use a single-color palette
P the color palette(s) are packed
T the frames of the image are saved with a transparent color, specified in the $4^{\text {th }}$ parameter
transparent color: the transparent color in HTML format (if not specified, is set to white) to be used with the T flag
Example:
SAVEGIFA = deck.gif

Note: there is not a "range" parameter because only the final deck can be printed (and then exported in an animated GIF file). If you want a partial deck, use a PRINT directive.

SAVEPAGES

This directive saves the full deck of cards in one or more image files (one for each page), with names specified in "filename" parameter, adding a progressive number for each page. The file formats accepted are BMP, JPG (or JPEG), and PNG.

Syntax:
SAVEPAGE $=$ "filename", switch, color profile
Parameters:
"filename": the name of the file(s) to be created
The switch parameter can optionally be set equal to:
ON to use the CMYK color space when a JPG/JPEG file format is specified
OFF to use the RGB color space (default)
If the former switch is ON, it can also be specified an optional color profile parameter, that can be an ICC/ICM file, or a JPG/JPEG (from which a color profile is extracted).

Example:
SAVEPAGES = page.png

Note: there is not a "range" parameter because only the final deck can be printed (and then exported in one or more image files). If you want a partial deck, use a PRINT directive.

SAVEPDF

This directive saves the full deck of cards in a PDF file specified in "filename" parameter. If you specify a filename with a question mark (?) as a first character, the program asks you if the existing file must be overwritten.

Syntax:

SAVEPDF = "pdf file", flags, icc profile

Parameters:
"pdf file": the name of the file to be created (.pdf extension)
flags: one or more of the following flags
A save the file in the PDF/A format
J compress the images as Jpeg
S scale down the images
N do not use compression
L use low level of compression
D use default level of compression
M use max level of compression
C use Ghostscript (exe path in Config) to convert to CMYK color profile
icc profile: use an external file as an ICC profile for CMYK conversion
Example:
SAVEPDF = deck.pdf
Note: there is not a "range" parameter because only the final deck can be printed (and then exported in a PDF file). If you want a partial deck, use a PRINT directive.

SECTION

The directives contained between SECTION and ENDSECTION directives are associated with the parameter "text" and can be activated or deactivated (using the switch parameter), this option can be selected on a window, for a faster activation/deactivation for multiple names. In this window, there are three buttons: one for enabling all the sections, one for disabling all the sections, and one (named "Cycle build") that validates and builds in sequence all the sections (enabling only one at each cycle).

Syntax:

SECTION = "text", switch, flag

The switch parameter can be set equal to:
ON to enable the section
OFF to disable the section
The flag parameter can be one or more of the following flags:
N this section is not included in the "Cycle build" procedure
O when this section is enabled, all the others are disabled (excluding sections with N flag)
Example:

```
SECTION = "Border", ON
    BORDER = RECTANGLE
ENDSECTION
```


SELECT

The SELECT...ENDSELECT structure can be used to create sections of code that must be executed only if are verified some conditions. In the default mode, a value is evaluated and only the CASE code with the same value is executed; you can also add an operator to be used for the test evaluation.

Syntax:

SELECT $=$ value
CASE $=$ value 1
...
$C A S E=$ value 2
...
CASEELSE
ENDSELECT
Parameters:
value: a string, number, label, or expression that can be evaluated
Example:

```
CARDS = 4
[TEST] = 1|2|3|4
SELECT = [TEST]
CASE = 1
    RECTANGLE = 1-4, 0, 0, 100%, 100%, #FF0000
CASE = <4
    ELLIPSE = 1-4, 0, 0, 100%, 100%, #0000FF
CASEELSE
    RHOMBUS = 1-4, 0, 0, 100%, 100%, #00FF00
ENDSELECT
```


SEQUENCE

This directive is used to start a SEQUENCE...ENDSEQUENCE structure, for creating one or more sequences.
Syntax:

SEQUENCE = label name

Parameters:
label name: the name of the label
Each line in this structure is added to the sequence with the name specified as a parameter.
Example:

```
SEQUENCE = Title
Earth
Moon
Mars
Venus
Jupiter
ENDSEQUENCE
```

There is an alternative syntax, for creating multiple sequences. Each line in this structure must contains the name of the sequence and a value, separated with a pipe | character. For example, this script creates five sequences of two elements each:

SEQUENCE =

```
Title |Earth
Image |Earth.jpg
Description |Earth is the third planet from the Sun.
```

```
Radius |6.371
Orbital Period|365
Title |Moon
Image |Moon.jpg
Description |The Moon is Earth's only natural satellite.
Radius |1.737
Orbital Period|26
```

ENDSEQUENCE

That script is equivalent to this:

```
[Title] = Earth|Moon
[Image] = Earth.jpg|Moon.jpg
[Description] = Earth is the third planet from the Sun.| The Moon is Earth's
only natural satellite.
[Radius] = 6.371|1.737
[Orbital Period] = 365|26
```

With this alternative syntax you can use a MULTI=number line to duplicate the subsequent lines. Example:

```
SEQUENCE
textlone
multi=2
text|Two
multi=3
text|Three
ENDSEQUENCE
```


SET

This directive sets a label with a value. Note: since the syntax [label] is replaced in the validations step, if you want to read a value memorized with a SET directive, you must use the $\{\mathbf{l} \mathbf{a b e l} \mathbf{?} \mathbf{n}\}$ syntax, where \mathbf{n} is the index of the sequence (use 1 if it is a single value).

Syntax:
SET = "range", label name, label value
Parameters:
"range": a set of cards
label name: the name of the label to be changed (or added, if not exists)
label value: the value of the label

SPECIAL

This directive is used to change the special symbols used for some variables. If you do not want to change a specific symbol, leave empty that parameter.

Syntax:
SPECIAL = char cardnum, char framenum, char framename

Parameters:

char cardnum: the character used for the number of the current card (default §)
char framenum: the character used for the number of the current frame (default ${ }^{\circ}$)
char framename: the character used for the name of the current frame (default $\boldsymbol{\mu}$)
Example:
SPECIAL = \$, ^, ?

STAR

This directive draws a star in a set of cards.
Syntax:
STAR = "range", pos x , pos y , width, height, num points, angle, factor, html color, html color, thickness, angle
Parameters:
"range": a set of cards
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the star (in cm)
height: height of the star (in cm)
num points: number of points
angle: angle of rotation (in degrees)
factor: from 0 (very pointy star) to 100 (polygon)
html color: border color of the star, in the same format used for HTML, you can also specify a gradient
html color: inner color of the star, in the same format used for HTML, if not specified the inner color is the same of border color. You can also specify "EMPTY" for a hollow star or a gradient
thickness: thickness of the border of the star (in cm), if omitted, the star's border is 1 pixel wide angle: angle of rotation of the inner core (in degrees)

Examples:

```
STAR = 1, 1, 1, 4, 7, 3, 0, 20, #00FF00
```

Result: Figure 62

```
STAR = 1, 1, 1, 4, 7, 5, 0, 50, #FF00FF, EMPTY, 0.1
```

Result: Figure 63
STAR = 1, 1, 1, 4, 7, 6, 90, 80, \#FF0000\#0000FF@90
Result: Figure 64

Figure 62

Figure 63

Parameters:
"range": a range of cards
switch: values accepted are:
ON to enable the storing of cards (the default)
OFF to disable the storing of cards

SYMBOL

This directive draws a NATO symbol in a rectangular area (to be used in a counter for a wargame); the "keys" parameter identifies the symbol used (with a code of three letters), and you can also draw more than one symbol by using a key with two or more codes.

Syntax:
SYMBOL $=$ "range", keys, pos x , pos y , width, height, html color, html color, width
Parameters:
"range": a set of cards
keys: a string, composed by codes of three characters each
pos \mathbf{x} : horizontal position (in cm)
$\boldsymbol{p o s} \mathbf{y}$: vertical position (in cm)
width: width of the rectangle in which the symbols are drawn (in cm)
height: height of the rectangle in which the symbols are drawn (in cm)
html color: color of the symbol, in the same format used for HTML, you can also specify a gradient
$\boldsymbol{h t m l}$ color: background color of the symbol, in the same format used for HTML, if not specified the background color is not drawn (you can also specify "EMPTY" for the same result)
thickness: thickness of the lines used to draw the symbol (in cm), if omitted, the lines are 1 pixel wide

Code	Description	Symbol	Code	Description	Symbol
ADE	air defense		ARM	armor	
AIM	airmobile		ART	field artillery	
AIR	airborne		CAV	cavalry	
AMP	amphibious		ENG	engineer	
ANT	anti-tank		HQ1	headquarter	

Code	Description	Symbol	Code	Description	Symbol
HQ2	headquarter	$\mapsto Q$	PAR	paratrooper	∇
INF	infantry		ROC	rocket	へ
MAR	marine	우	WHE	wheeled	$\bigcirc \bigcirc 0$
MOT	motorized		WIF	fixed wing	
MTN	mountain	A	WIR	rotary wing	

Example:
SYMBOL = 1, INFMTN, 10\%, 10\%, 80\%, 50\%, \#000000, EMPTY, 2\%

TABLE

This directive opens the virtual table (see page 69) at the end of the building process.
Syntax:
TABLE $=$ num draw, flags
Parameters:
num draw: the number of cards drawn when you double click a deck
flags: you can choose these flags:
R the drawn card is placed at the right of the deck
$\mathrm{L} \quad$ the drawn card is placed at the left of the deck
$\mathrm{U} \quad$ the drawn card is placed at the top of the deck
B the drawn card is placed at the bottom of the deck
O the drawn position is rotated
$\mathrm{P} \quad$ the drawn position is randomized
A enable the alignment to grid
C show the canvas as a background image
S automatic selection of object
T show the tags
F bring the selected object to the front
M move complete stacks of cards

TAG

This directive assigns a label and a numeric value to a card (or a range of cards). This tag is shown in the Virtual Table (see page 69) when a card is put in a specific location of the table (if more than one card is in one location, the values of all the tags with the same name are added up).

Syntax:
TAG = "range", tag, number
Parameters:
"range": a set of cards
tag: the name of the tag
number: the value of the tag (it can be a sequence of values)
Examples:
TAG $=1-10$, card, 1
TAG $=1-20$, value, $1|2| 3|4| 5$

TAGS

This directive creates a rule that is evaluated in the Simulator. The rule can contain series of letters of numbers, with this syntax:

- one or more "\$" symbol, then letters to define a tag's value that is present, using the same letter means that the same element is present with that number of copies
- one or more " $£$ " symbol, then numbers to define the difference between the values of tag when multiple copies are present (i.e., in a straight); with the $!\mathrm{N}>\mathrm{M}$ syntax is defined that a tag with value N is treated also like M (i.e., the ace in a straight can be positioned before the 2 or after the King)
- one or more " $=$ " symbol, then one or more tags that must be present in that exact number
- one or more " + " symbol, then one or more tags that must be present in that number or more

You can specify more than one rule for a single directive, all of which will be evaluated at the same time, by separating each rule (and each tag) with the pipe character " \mid ".

Syntax:
TAGS $=$ tag, schema, name of schema
Parameters:
tag: the name of the tag used in the schema
schema: letters and numbers that define a rule that is evaluated
name of schema: the name of the schema used in the simulator
Example:

```
TAG = 1-52, value, 1|2|3|4|5|6|7|8|9|10|11|12|13
TAG = 1-13, seed, 1
TAG = 14-26, seed, 2
TAG = 27-39, seed, 3
TAG = 40-52, seed, 4
TAGS = seed|value, $aaaaa|==1011121301, Royal flush
TAGS = seed|value, $aaaaa|£1111!1>14, Straight flush
TAGS = value, $aaaab, Four of a kind
TAGS = value, $aabbb, Full house
TAGS = seed, $aaaaa, Flush
TAGS = value, £1111!1>14, Straight
TAGS = value, $aaabc, Three of a kind
TAGS = value, $aabbc, Two pairs
TAGS = value, $aabcd, One pair
TAGS = value, $abcde, No pair
```


TEXT

This directive writes a text on a range of cards. The font used is specified using FONT (see page 109) or FONTRANGE (see page 111) command.

Syntax:
TEXT = "range", "text", pos x , pos y, width, height, horizontal alignment, vertical alignment, angle, alpha, outline width, circle offset, circle angle, width factor, height factor

Parameters:
"range": a set of cards
"text": the text to be printed
pos \mathbf{x} : horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the rectangle used to draw the text (in cm); you can specify a negative number for a text mirrored horizontally
height: height of the rectangle used to draw the text (in cm); you can specify a negative number for a text mirrored vertically
horizontal alignment: the text's horizontal alignment in the rectangle, values accepted are:

```
left left aligned
center centered
right right aligned
```

The horizontal alignment is optional, if omitted is equal to center.
vertical alignment: the text's vertical alignment in the rectangle, values accepted are:

top	top aligned
center	centered
bottom	bottom aligned
wordwrap	the text is top aligned and word-wrapped in the rectangle
wwtop	the text is top aligned and word-wrapped in the rectangle
wwcenter	the text is center aligned and word-wrapped in the rectangle
wwbottom	the text is bottom aligned and word-wrapped in the rectangle
charwrap	the text is centered, spaced and word-wrapped (every character) in a pattern

The vertical alignment is optional, if omitted is equal to center.
angle: angle of text rotation, if omitted is 0 (no rotation)
alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of transparency is the starting level, ending with 0 (full transparent)
outline width: if you specify a number, the font is drawn as outlined, with this number as line's width
circle offset: if you specify a number, this is the offset for a circular text (from 0 to 100), the default is 25
circle angle: if you specify a number, this is the angle of each letter in a circular text, the default is 0
width factor: if you specify a number, the text is
horizontally stretched (the default is 100)
height factor: if you specify a number, the text is vertically stretched (the default is 100)

If you want a more flexible command for text, you can use HTMLTEXT (with HTMLFONT,

HTMLMARGINS, HTMLIMAGE, and HTMLKEY). With these commands, you can use multiple fonts, sizes, colors, images, justified alignment and more (anything you can write with an HTML editor).

Tip: you can choose a single specific symbol or character from a visual form, clicking on the button "Insert" and choosing the тепи voice "Symbol"

Examples:

```
RECTANGLE = 1, 1, 1, 4, 7, #0000FF
FONT = Arial, 16, T, #FFFFFF
TEXT = 1, "center-top", 1, 1, 4, 2, center, top
TEXT = 1, "center-center", 1, 3, 4, 3, center, center
TEXT = 1, "center-bottom", 1, 6, 4, 2, center, bottom
Result: Figure 66
RECTANGLE = 1, 1, 1, 4, 7, #0000FF
FONT = Arial, 16, T, #FFFFFF
TEXT = 1, "left-top", 1, 1, 4, 2, left, top
TEXT = 1, "left-center", 1, 3, 4, 3, left, center
TEXT = 1, "left-bottom", 1, 6, 4, 2, left, bottom
Result: Figure 65
RECTANGLE = 1, 1, 1, 4, 7, #0000FF
FONT = Arial, 16, T, #FFFFFF
TEXT = 1, "right-top", 1, 1, 4, 2, right, top
TEXT = 1, "right-center", 1, 3, 4, 3, right, center
TEXT = 1, "right-bottom", 1, 6, 4, 2, right, bottom
Result: Figure 68
[test] = "Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Aenean fermentum ipsum eu sapien."
RECTANGLE = 1, 1, 1, 4, 7, #0000FF
FONT = Arial, 12, T, #FFFFFF
TEXT = 1, [test], 1, 1, 4, 7, left, wwtop
Result: Figure 67
```



```
    Figure 68
Figure 67
[test] = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean
fermentum ipsum eu sapien."
RECTANGLE = 1, 1, 1, 4, 7, #0000FF
FONT = Arial, 12, T, #FFFFFF
TEXT = 1, [test], 1, 1, 4, 7, center, wwcenter
Result: Figure 70
[test] = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean
fermentum ipsum eu sapien."
RECTANGLE = 1, 1, 1, 4, 7, #0000FF
FONT = Arial, 12, T, #FFFFFF
TEXT = 1, [test], 1, 1, 4, 7, right, wwbottom
Result: Figure }6
```


TEXTFONT

This directive writes a text on a range of cards, it uses the parameters both from TEXT (see page 173) and FONT (see page 109) directives.

Syntax:

TEXTFONT = "range", "text", pos x , pos y , width, height, horizontal alignment, vertical alignment, angle, alpha, "font name", font size, style, html color font, html color background, outline width, circle offset, circle angle, char space

TEXTLIMIT

This directive fills four variables with the coordinates of latest drawn text's boundaries (in cm), from TEXT (see page 173) or HTMLTEXT (see page 123, in this case a L flag gives more precision) commands. Note that you must specify the TEXTLIMIT line after the TEXT/HTMLTEXT. You can use these variables in other commands.

Syntax:
TEXTLIMIT = "range", switch text, switch htmltext
The four variables are:

TL	(left)
TR	(right)
TT	(top)
TB	(bottom)

Parameters:
"range": a set of cards
switch text: values accepted are:
ON from now on, all TEXT directives are considered to have automatically a TEXTLIMIT
OFF default behavior, TEXT LIMIT must be explicitly added
switch htmltext: values accepted are:
ON from now on, all HTMLTEXT directives are considered to have automatically a TEXTLIMIT
OFF default behavior, TEXTLIMIT must be explicitly added
Example:

```
FONT = Arial, 16, , #000000
TEXT = 1, "This is a test", 0, 0, 6, 2, center, center
TEXTLIMIT = 1
LINE = 1, TL, 0, TL, 2, #000000, 0.05
LINE = 1, TR, 0, TR, 2, #000000, 0.05
LINE = 1, 0, TT, 6, TT, #000000, 0.05
LINE = 1, 0, TB, 6, TB, #000000, 0.05
Result: Figure 71
```


Figure 71

THREADS

When the deck is built, if you specify a number different from one, nanDECK executes n copies of itself that render a section of the current deck. The main program waits until all the sections are complete and loads them in the current deck. With a multithreaded CPU, the result is a shorter time for building a deck.

Syntax:
THREADS $=$ number

Parameter:
number: the number of threads that must be used
Example:

```
THREADS = 4
```

Note: this method works if the cards are made independently each other, it cannot be used if in the script there are keywords like COPYCARD or DUPLEX.

TOKEN

This directive prepares a token to be used in the "Virtual table" option (see page 69). A token in the Virtual table can be a simple counter with a text that can be moved or stacked, or a dice that can be rolled to obtain random values.

Syntax:
TOKEN $=$ "formula", width, height, font color, back color, number, pos x, pos y, sequence, starting frames, frames, rules, chromakey

Parameters:
"formula": the text visualized in the token, can be an empty string or it can be used an expression. If you use an expression with a "d" for a random value, it can be rolled like a die with a double-click of the mouse on the token itself
width: width of the token (in pixels), you can also specify a \% of the screen width
height: height of the token (in pixels), you can also specify a \% of the screen height
font color: font color in the same format used for HTML
back color: background color in the same format used for HTML
number: the number of tokens (one, if not specified), if more than one the tokens are stacked together on the table
$\boldsymbol{p o s} \boldsymbol{x}$: horizontal position for the token (in pixels), you can also specify a $\%$ of the screen's width
pos \boldsymbol{y} : vertical position for the token (in pixels), you can also specify a $\%$ of the screen's height
sequence: a sequence of images from which is extracted the image shown on the token (the position of the image extracted is specified in the formula as a number, and it can be a random value)
starting frames: if specified, the token is placed in a frame randomly taken from this list
frames: when a token is moved on the table, it is positioned in the nearest frame from this list
rules: when a token is moved on the table, are enforced the rules specified in this parameter (see page 69 for a list of the rules)
chromakey: when an image is used, the color specified in this parameter is treated as transparent, or the transparent color will be taken from one of the four corners or the center of the image, as specified by one of these keywords:

TOPLEFT
TOPRIGHT
BOTTOMLEFT
BOTTOMRIGHT
CENTER
NULL
Examples:

```
TOKEN = "{1d6}", 50, 50, #FFFFFF, #0000FF
TOKEN = "$", 100, 50, #FFFFFF, #00FF00, 10
```


TRACK

This directive draws a racetrack section from a point ($\mathrm{x} 1, \mathrm{y} 1$) to another point ($\mathrm{x} 2, \mathrm{y} 2$).
Syntax:

TRACK = "range", pos x 1 , pos y 1 , pos x 2 , pos y 2 , track width, html color, num lanes, num spaces, flags, thickness, left factor, right factor, pattern

Parameters:
"range": a set of cards
pos $\mathbf{x 1}$, pos y1: coordinates of first point (in cm)
pos $\mathbf{x 2}$, pos $\mathbf{y} \mathbf{2}$: coordinates of second point (in cm)
track width: width of the track (in cm)
html color: color of the track, in the same format used for HTML, you can also specify a gradient
num lanes: the number of the lanes that compose the track, the minimum is one
num spaces: the number of spaces long the track, the minimum is one
flags: you can choose these flags:
S the track section is closed at the start
E the track section is closed at the end
H even lanes are drawn forward one-half space
L the track is linked, using a line, to the last track drawn on the same card
C the track is linked, using a curve, to the last track drawn on the same card
R do not draw external right link
F do not draw external left link
thickness: thickness of the track's line (in cm), if omitted, the line is 1 pixel wide
left factor: for curved link, this parameter set the width of the curve, for the left side of the track
left factor: for curved link, this parameter set the width of the curve, for the right side of the track
pattern: a pattern for the track's line, this pattern can be composed of

O	dot
D	dash
S	space

These letters can be repeated, for example "OSDSOS" is a valid pattern.

Example:
TRACK = 1, 1, 8, 5, 1, 1, \#000000, 3, 4, SE, 0.1
Result: Figure 72

Figure 72

TRACKRECT

This directive draws a racetrack section from a vertex of a rectangle to the opposite vertex.
Syntax:
TRACK = "range", pos x , pos y , width, height, track width, html color, num lanes, num spaces, flags, thickness, left factor, right factor, pattern

Parameters:

"range": a set of cards
pos x: horizontal position (in cm)
pos y: vertical position (in cm)
width: width of the rectangle (in cm)
height: height of the rectangle (in cm)
track width: width of the track (in cm)
html color: color of the track, in the same format used for HTML, you can also specify a gradient
num lanes: the number of the lanes that compose the track, the minimum is one
num spaces: the number of spaces long the track, the minimum is one
flags: you can choose these flags:
S the track section is closed at the start
E the track section is closed at the end
H even lanes are drawn forward one-half space
L the track is linked, using a line, to the last track drawn on the same card
C the track is linked, using a curve, to the last track drawn on the same card
R do not draw external right link
F do not draw external left link
thickness: thickness of the track's line (in cm), if omitted, the line is 1 pixel wide
left factor: for curved link, this parameter set the width of the curve, for the left side of the track
left factor: for curved link, this parameter set the width of the curve, for the right side of the track
pattern: a pattern for the track's line, this pattern can be composed of:

O	dot
D	dash
S	space

These letters can be repeated, for example "OSDSOS" is a valid pattern.

TRANSFORM

This directive applies a projection transformation (on a quadrilateral) to all the images uploaded with an IMAGE directive or a LAYER structure. If you want to reset this setting, use only the range parameter, without coordinates.

Syntax:
TRANSFORM $=$ "range", $x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4$
Parameters:
"range": a set of cards
$\boldsymbol{x 1}$: horizontal position (in \%) of the top-left vertex
$y 1$: vertical position (in \%) of the top-left vertex
$\boldsymbol{x} 2$: horizontal position (in \%) of the top-right vertex
y2: vertical position (in \%) of the top-right vertex
$x 3$: horizontal position (in \%) of the bottom-right vertex
$y 3$: vertical position (in \%) of the bottom-right vertex
$\boldsymbol{x 4}$: horizontal position (in \%) of the bottom-left vertex
$\boldsymbol{y 4}$: vertical position (in \%) of the bottom-left vertex

TRIANGLE

This directive draws a triangle in a set of cards.
Syntax:

TRIANGLE = "range", pos x 1, pos y 1 , pos x 2 , pos y 2 , pos x 3 , pos y 3 , html color, html color, thickness
Parameters:
"range": a set of cards
pos $\mathbf{x 1}$, pos y1: coordinates of $1^{\text {st }}$ point (in cm)
pos $\mathbf{x} 2$, pos $\mathbf{y} 2$: coordinates of $2^{\text {nd }}$ point (in cm)
pos $\mathbf{x 3}$, pos y3: coordinates of $3^{\text {rd }}$ point (in cm)
html color: border color of the triangle, in the same format used for HTML, you can also specify a gradient
html color: inner color of the triangle, in the same format used for HTML, if not specified the inner color is the same of border color. You can also specify "EMPTY" for a hollow triangle or a gradient
thickness: thickness of the border of the triangle (in cm), if omitted, the triangle's border is 1 pixel wide

Examples

```
TRIANGLE = 1, 1, 8, 3, 1, 5, 8, #00FF00
Result: Figure 73
TRIANGLE = 1, 1, 8, 3, 1, 5, 8, #FFOOFF, EMPTY, 0.1
Result: Figure 74
TRIANGLE = 1, 1, 8, 3, 1, 5, 8, #FF0000#0000FF@90
Result: Figure }7
```


UNIT

This directive chooses a unit to be used with all the numeric size in the script. For a correct use, it is better to include it in the first line of the script. The default size unit, if UNIT is not used, is the " cm ".

Syntax:
UNIT $=$ type

Figure 73

Figure 74

Figure 75

Parameters:
type: the type of unit can be chosen between:
CM
MM
INCH

Example:

Tip: instead of using absolute values, you can always specify a size (in every directive) as a fraction of the whole card, using number followed by the percentage "\%".

VECTOR

This directive draws an SVG file in a set of cards.

Syntax:
VECTOR = "range", "image file", pos x, pos y, width, height, angle, alpha, flags
Parameters:
"range": a set of cards
"image file": an existent .svg image file (eventually with a path)
$\boldsymbol{p o s} \mathbf{x}$: horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the image (in cm)
height: height of the image (in cm)
angle: angle of image rotation, can be 0 for no rotation
alpha: level of transparency of image, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full solid)
flags: you can choose these flags:
I use the internal engine (default)
E use Inkscape for image's rendering (you must specify the path in the Config window)
Example:
VECTOR=1-10, test.svg, 0, 0, 4, 4

Note: with the internal engine, the SVG file specifications are not fully implemented, some issues exist (for example, in gradient fill).

VISUAL

This directive is used to open a VISUAL...ENDVISUAL structure (see "Visual editor", page 72).

Syntax:
VISUAL $=$ flags, horizontal steps, vertical steps
Parameters:
flags: you can choose these flags:
H show the horizontal ruler
V show the vertical ruler
G show the grid
P snap to the grid when you move an object
S snap to the grid when you resize an object
set the snap to the grid automatically for all objects
Y set the size to the grid automatically for all objects
horizontal steps: number of horizontal steps for the grid
vertical steps: number of vertical steps for the grid

VORONOI

This directive draws a Voronoi diagram in a card. To specify the points, you use frames with a color as $5^{\text {th }}$ parameter (you can also use a gradient with multiple colors or add the "strength" of the point after a $\%$ symbol); the color can also be specified with a TAGFRAME function.

Syntax:
VORONOI $=$ "range", pos x, pos y , width, height, frames, flags, separation
Parameters:
"range": a set of cards
$\boldsymbol{p o s} \mathbf{x}$: horizontal position (in cm)
pos \mathbf{y} : vertical position (in cm)
width: width of the image (in cm)
height: height of the image (in cm)
frames: the frames used to plot points; you can use * in the name
flags: you can choose these flags:
E the distances are measured using an "Euclidean" formula (square root and powers)
M the distances are measured using a "Manhattan" formula (absolutes differences)
R the colors are drawn with a gradient calculated using RGB color space
H the colors are drawn with a gradient calculated using HSB color space
separation: width of the separation (in cm) between zones
Example:

```
<voro1> = 2, 2, 0, 0, #FF0000
<voro2> = 4, 2, 0, 0, #00FF00
<voro3> = 2, 7, 0, 0, #0000FF
<voro4> = 4, 7, 0, 0, #00FFFF
<voro5> = 3, 4.5, 0, 0, #FFFF00
VORONOI = 1, 1, 1, 4, 7, voro*
```


ZOOM

This directive changes the size of cards (all elements, FONT included). Useful to change the result without having to modify all the data. If omitted, is 100 (and there is no change in size). You can specify a $2^{\text {nd }}$ parameter for vertical zoom if it is different from horizontal one.

Syntax:
ZOOM $=$ width, , eight
Examples:

```
;half size
```

$\mathrm{ZOOM}=50$
; double size
ZOOM = 200

Code examples

Wargame counters

```
cardsize=2,2
dpi=600
linkmulti=number
link=data.txt
[back ger]=#C0C0C0
[front ger]=#000000
[out_gēr]=#808080
[back_fre]=#8ADDF4
front_fre]=#000000
[out_fre]=#808080
macro=outline,(range1),(text1),(frame),(font1),(size1),(col1),(col2),(col3)
    font=(font1),(size1),,(col3),(col2),0.01,0.01
    text=(range1),(text1),(frame)
    font=(font1),(size1),T,(col1),(col2)
    text=(range1),(text1),(frame)
end
[all]=1-{(number) }
<cnt all>=0,0,2,2
<val lft>=0.25,1.25,0.5,0.75
<val_cnt>=0.75,1.25,0.5,0.75
<val rgt>=1.25,1.25,0.5,0.75
<val_id>=0.25,0,1.5,0.25
<img_cnt>=0.45,0.3,1.1,0.9
<img_cnt2>=0.6,0.5,0.8,0.5
rectāngle=[all],0,0,2,2,[back_[nation]]
outline=[all], [combat],<val_lft>,Arial,16,[front_[nation]],[back_[nation]],[out_[nation]]
outline=[all],[movement],<v\overline{al_rgt>,Arial,16, [fron}t_[nation]],[back_[nation]],[oút_[nation]]
if=[command]<>0
    outline=[all],[command],<val_cnt>,Arial,16,[front_[nation]],[back_[nation]],[out_[nation]]
endif
outline=[all],[id],<val_id>,Arial,7,[front_[nation]],[back_[nation]],[out_[nation]]
if=[type]=inf
    line=[all],<img_cnt,PTL>,<img_cnt,PBR>, [front_[nation]],0.04
    line=[all],<img_cnt,PBL>,<img_cnt,PTR>, [front_[nation]],0.04
    line=[all],<img_cnt,PTL>,<img_cnt,PBR>, [out_[nation]],0.02
    line=[all],<img_cnt,PBL>,<img_cnt,PTR>, [out_[nation]],0.02
endif
if=[type]=cav
    line=[all],<img_cnt,PBL>,<img_cnt,PTR>,[front_[nation]],0.04
    line=[all],<img_cnt,PBL>,<img_cnt,PTR>, [out_[nation]],0.02
endif
if=[type]=arm
    ellipse=[all],<img_cnt2>,[front_[nation]],EMPTY,0.04
    ellipse=[all],<img_cnt2>, [out_[nation]], EMPTY,0.02
endif
if=[type]=hq
    outline=[all],HQ,<img_cnt>,Arial,16,[front_[nation]],[back_[nation]],[out_[nation]]
endif
rectangle=[all],<img_cnt>, [front_[nation]],"empty",0.05
rectangle=[all],<img_cnt>,[out_[nation]],"empty",0.02
```

Data file (data.txt):
nation, type, combat, movement, command,id, number
fre, inf, 3, 3, 0, XXX, 2
fre, cav, 2, 5, 0, XX, 2
fre, arm, 4, 4, 0, XXX, 2
fre, arm, 5, 4, 0, XXX, 2
fre,hq, 1,4,3,"De Gaulle",1
ger, inf, 3, 3, 0, XXX, 2
ger, inf, 3, 3, 0, XXXX, 2
ger, arm, 6, 5, 0, XXX, 2
ger, arm, 5, 4, 0, XXX, 2
ger, hq, 1, 5, 3, Rommel, 1

Dice results

```
cardsize=18,3
border=rectangle
zoom=50
[all]=1-36
<d4>=0,0,3,3
<d6>=3,0,3,3
<d8>=6,0,3,3
<d10>=9,0,3,3
<d12>=12,0,3,3
<d20>=15,0,3,3
[col] = #000000
font=Arial,32,T,[col]
polygon=[all],<d4>, 3,0,[col],EMPTY,0.1
text=[all],"{1d4}",<d4>
polygon=[all],<d6>,4,45,[col],EMPTY,0.1
text=[all],"{1d6}",<d6>
polygon=[all],<d8>, 4,0,[col], EMPTY,0.1
text=[all],"{1d8}",<d8>
line=[all],9,1,10.5,0, [col],0.1
line=[all],10.5,0,12,1,[col],0.1
line=[all],12,1,10.5,3,[col],0.1
line=[all],10.5,3,9,1,[col],0.1
text=[all],"{1d10}",<d10>
polygon=[all],<dl2>,5,0,[col], EMPTY,0.1
text=[all],"{1d12}",<d12>
polygon=[all],<d20>, 3,90,[col], EMPTY,0.1
text=[all],"{1d20}",<d20>
```


Score track

```
unit=inch
canvassize=15,15
[side_a]=framebox (0,0,14,1,1,1,C)
[side_b]=framebox(14,0,1,14,1,1,C)
[side c]=framebox(1,14,14,1,1,1,C)
[side_d]=framebox (0,1,1,14,1,1,C)
rectangle=0,<side*>,#000000,empty
font=arial,16,T,#000000
text=0,"{`-1}",<side_a*>
text=0,"{13+** ",<side_b*>, center, center,90
text=0,"{26+16-\mp@subsup{}{}{\circ}}",<si\overline{ide_c*>, center, center,180}0
text=0,"{40+16-\mp@subsup{}{}{\circ}}",<side_d*>, center, center,270
save=0,"board.png"0,0,15,15
```


Boggle dice

```
N[a]=01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16
[range]=1-{(a)}
[d01]=LRYTTE
[d02]=VTHRWE
[d03]=EGHWNE
[d04]=SEOTIS
[d05]=ANAEEG
[d06]=IDSYTT
[d07]=OATTOW
[d08]=MTOICU
[d09]=AFPKFS
[d10]=XLDERI
[d11]=HCPOAS
[d12]=ENSIEU
[d13]=YLDEVR
[d14]=ZNRNHL
[d15]=NMIQHU
[d16]=OBBAOJ
CARDSIZE = 4.5, 4.5
FONT = Arial, 96, , #000000
TEXT = [range], [[d[a]]:d6,1], 0, 0, 100%, 100%
RECTANGLE = [range], 0, 0, 100%, 100%, #0000FF, EMPTY, 10%
```


Catan map

canvassize=35,35
[sea] $=$ framehex $(0,0,35,35,3, C)$
[map] =framedisk (sea43, sea41)
'sea
polygon=0, <sea*>, 6, 90, \#000000, \#0000FF, 0.1
'field
polygon $=0,<4 \sim!$ map* $>, 6,90, \# 000000, \#$ CEC90B, 0.1
'forest
polygon=0,<4~!map*>, 6, 90, \#000000, \#008000,0.1 'pasture
polygon=0, <4~!map* $>, 6,90, \# 000000, \# 80$ FF00, 0.1
'mountain
polygon=0,<3~!map*>, 6, 90, \#000000, \#C0C0C0, 0.1 'hill
polygon=0,<3~!map*>, 6, 90, \#000000, \#800000,0.1
'desert
polygon $=0,<\sim$!map* $>, 6,90, \# 000000, \#$ FFFF80, 0.1
save=0, "catan.jpg", 0, 0, 35, 35

Clock

```
cardsize = 10,10
[clock] = frameclock(1, 1, 8, 8, 2, 2, 12)
ellipse = 1, <clock*>, #CCCCCC
font = Arial, 32, T, #000000
text = 1, "{``}", <clock*>, center, center, `* 360/12
layer = 50
;hours
[hour] = frameclock(2, 2, 6, 6, 1, 1, 12)
line = 1, 5, 5, <hour4, PCC>, #FF0000, 0.6
;minutes
line = 1, 5, 5, <clock2, PCC>, #0000FF, 0.4
endlayer
```


Hex board

page $=21.59,27.94$, portrait, hv
cardsize=16,24
border=none
[base] =framehex ($0,0,16,24,0.85, C)$
[hex01]=frameline (base0101,base0111)
[hex02]=frameline (base0201, base0211)
[hex03] =frameline (base0302,base0312)
[hex04] =frameline (base0402,base0412)
[hex05]=frameline (base0503,base0513)
[hex06] =frameline (base0603,base0613)
[hex07] =frameline (base0704,base0714)
[hex08] =frameline (base0804,base0814)
[hex09]=frameline (base0905,base0915)
[hex10]=frameline (base1005,base1015)
[hex11] =frameline (base1106,base1116)
polygon=1,<hex*>,6,90,\#000000,EMPTY,0.1

Triangle map

canvassize=21,27
[h] $=$ framehex $(0,0,21,27,1, C)$
star $=0,<h *>, 6,90,1, \# 000000$, EMPTY, 0.05
hexgrid=0,0,0,21,27,1, \#000000, EMPTY, 0.05
save=0, "triangle.png", 0, 0, 21,27

Chess board

With font "Chess Cases". Link: http://www.enpassant.dk/chess/fonteng.htm\#CASES
canvassize=18,18
[ch] =framebox $(1,1,16,16,2,2, E)$
\{[ch white]=framelist (cha1, chc1,che1,chg1,chb2,chd2,chf2,chh2,cha3, chc3, che3,chg3,chb4,chd4,chf4,chh4, cha5, chc5, che 5, chg 5, chb 6, chd 6, chf 6, chh 6, cha 7, chc 7, che 7, chg 7, chb 8, chd 8, chf 8, chh 8$)\}$
$\{[$ ch_black] =framelist (chb1, chd1, chf1, chh1, cha2, chc2, che 2, chg 2 , chb 3, chd 3, chf 3, chh 3, cha 4, chc 4, che 4, chg 4,

rectangle $=0$, cch_white>, \#EEEEEE
rectangle $=0,<c h$ black>, \#BBBBBB
[tt] =framebox $(1,0,16,1,2,1, N)$
$[$ tb $]=$ framebox $(1,17,16,1,2,1, N)$
[t1] =framelist (tt1, tb1)
[t2]=framelist (tt2,tb2)
[t3] =framelist (tt3, tb3)
$[t 4]=$ framelist (tt 4, tb 4)
$[t 5]=$ framelist $(t t 5$, tb5 $)$
$[t 6]=$ framelist (tt6, tb 6)
[t7] =framelist (tt7, tb7)
[t8] =framelist (tt8, tb8)
$[s l]=$ framebox $(0,1,1,16,1,2, \mathrm{~N})$
$[s r]=$ framebox $(17,1,1,16,1,2, N)$
[s1]=framelist (sl1,sr1)
[s2]=framelist (sl2,sr2)
[s3]=framelist (sl3,sr3)
$[s 4]=$ framelist (sl4,sr4)
[s5] =framelist (sl5,sr5)
[s6]=framelist(sl6,sr6)
[s7]=framelist(sl7,sr7)
[s8]=framelist(sl8,sr8)
font=arial,16, \#000000
text=0, a, <t1>
text $=0, b,<t 2>$
text $=0, c,<t 3>$
text $=0, d,\langle t 4\rangle$
text $=0, e,\langle t 5\rangle$
text $=0, f,\langle t 6\rangle$
text $=0, \mathrm{~g},\langle\mathrm{t} 7\rangle$
text $=0, h,\langle t 8\rangle$
text $=0,8,\langle s 1\rangle$
text $=0,7,<s 2>$
text $=0,6,<s 3>$
text $=0,5,<s 4>$
text $=0,4,<\mathrm{s} 5>\mathrm{a} \quad \mathrm{b} \quad \mathrm{c}$ d d
text $=0,3,<s 6>$
text $=0,2,\langle s 7\rangle$
text $=0,1,\langle s 8\rangle$
font="chess cases",48,T,\#000000
[wpa] =p
[wkn] $=n$
[wbi] $=\mathrm{b}$
[wro] $=r$
[wqu] =q
[wki] $=k$
$[$ bpa $]=0$
$[b k n]=m$
$[\mathrm{bbi}]=\mathrm{v}$
[bro] $=\mathrm{t}$
[bqu] $=w$
[bki] =l
text $=0$, [wpa], <ch? 7>
text=0, [wro], <cha8>
text $=0$, [wkn], <chb $8>$
text=0, [wbi], <chc8>
text $=0$, [wqu], <chd $8>$ text=0, [wki], <che8> text=0,[wbi],<chf8> text=0, [wkn],<chg8> text=0, [wro], <chh8> text=0, [bpa], <ch?2> text $=0$, [bro], <cha1> text $=0,[b k n],<c h b 1>$ text=0, [bbi],<chc1> text=0, [bqu], <chd1> text $=0$, [bki], <che1> text $=0$, [bbi], <chf1> text=0, [bkn],<chg1> text=0, [bro],<chh1>
save $=0$, chessboard2.png, $0,0,18,18$

Trivia cards

```
linkmulti=num
link="q&a.txt"
[all]="1-{(id)}"
[card_id]=join("Card #",[id])
[background]=#D0D0D0
[ink]=#000000
[col_q]=#FFFF80
[col_a]=#80FF80
rectangle=[all],0,0,100%,100%,[background]
font=arial,16,,[ink],[background]
text=[all],[card_id], 0,0,100%,20%,center,center
roundrect=[all],5%,20%,90%,35%,#000000, [col_q],0.1
font=arial,12,,[ink],[col_q]
text=[all],[question],10%,22%,80%,31%,left,wordwrap
roundrect=[all],5%,60%,90%,35%,#000000, [col_a],0.1
font=arial,12,,[ink],[col_a]
text=[all],[answer],10%,62%,80%,31%,left,wordwrap
```


Data file (q\&a.txt):

id, num, question, answer
1,1,"This is question \#1","This is answer \#1"
2,1,"This is question \#2","This is answer \#2"
3,1,"This is question \#3","This is answer \#3"
4,1,"This is question \#4","This is answer \#4"
5,1,"This is question \#5","This is answer \#5"
6,1,"This is question \#6","This is answer \#6"
7,1,"This is question \#7","This is answer \#7"
8,1,"This is question \#8","This is answer \#8"
9,1,"This is question \#9","This is answer \#9"
10,1,"This is question \#10","This is answer \#10"

Card \#1

This is question \#1

This is answer \#1

Hex racetrack

canvassize=42,44
[hexa] =framehex $(0,0,42,44,1, C)$
[hexb] =framedisk (hexa1412, hexa0112)
[hexc] =framedisk (hexa1412, hexa0912)
[hexd] =framesub (hexb*, hexc*)
polygon=0, <hexd*>, 6, 90 , \#000000, EMPTY, 0.1
save=0, "track.png", 0, 0, 42, 44

Tuckbox

[img1]=none
[img2]=none
INPUTTEXT="wid","Width (cm)","6"
INPUTTEXT="hei","Height (cm)","9"
INPUTTEXT="dep","Depth (cm)","3"
INPUTCHOICE="extra","Add extra lines", "Yes", "Yes|No"
NPUTTEXT="img1","Box image (front)","", G
INPUTTEXT="img2", "Box image (rear)","", G

```
fla]=[dep]/2
ide]=[fla]/2
col1]=#000000
[col2]=EMPTY
thi]=0.1
```

Uncomment the following line for A4 paper
PAGE $=21,29.7$, PORTRAIT, HV

'Uncomment the following line for Letter paper
PAGE=21.59,27.94, PORTRAIT, HV
BORDER=NONE
CARDSIZE $=[f l a]+[$ dep $]+[$ hei $]+[$ dep $]+[f l a],[$ dep $]+[w i d]+[d e p]+[w i d]+[f l a]$
IF=[img1]=none
ELSE
IMAGE=1,[img1],[fla]+[dep],[dep], [hei],[wid], 90, P ENDIF

IF=[img2]=none
ELSE
IMAGE=1,[img2],[fla]+[dep],[dep]+[wid]+[dep],[hei],[wid],90, P ENDIF

RECTANGLE=1,[fla]+[dep] ,0 ,[hei],[dep],[col1], [col2],[thi]
RECTANGLE=1,[fla], [dep] ,[dep],[wid],[col1],[col2],[thi]
RECTANGLE=1, [fla]+[dep] ,[dep] ,[hei],[wid],[col1],[col2],[thi]
RECTANGLE=1, [fla]+[dep]+[hei], [dep] ,[dep],[wid], [col1], [col2], [thi]
RECTANGLE=1,[fla]+[dep] ,[dep]+[wid] , [hei], [dep],[col1], [col2], [thi]
RECTANGLE=1,[fla]+[dep] ,[dep]+[wid]+[dep],[hei],[wid],[col1],[col2], [thi]
LINE=1,[fla]+[dep], 0,[fla]+[dep]-[fla],[ide], [col1],[thi]
LINE=1, [fla]+[dep]-[fla],[ide] ,[fla]+[dep]-[fla],[dep]-[ide],[col1],[thi]
LINE=1,[fla]+[dep]-[fla],[dep]-[ide],[fla]+[dep], [dep], [col1],[thi]
LINE=1, [fla]+[dep]+[hei] ,0, [fla]+[dep]+[hei]+[fla],[ide] ,[col1],[thi]
LINE $=1,[f l a]+[$ dep $]+[h e i]+[f l a],[i d e],[f l a]+[d e p]+[h e i]+[f l a],[d e p]-[i d e],[c o l 1],[t h i]$
LINE=1,[fla]+[dep]+[hei]+[fla],[dep]-[ide],[fla]+[dep]+[hei], [dep], [col1],[thi]
LINE=1, [fla], [dep] , [fla]-[fla],[dep]+[ide], [col1],[thi]
LINE=1, [fla]-[fla], [dep]+[ide] ,[fla]-[fla],[dep]+[wid]-[ide],[col1],[thi]
LINE=1,[fla]-[fla],[dep]+[wid]-[ide],[fla], [dep]+[wid], [col1],[thi]
LINE=1,[fla]+[dep]+[hei]+[dep] ,[dep] ,[fla]+[dep]+[hei]+[dep]+[fla],[dep]+[ide],[col1],[thi]
LINE=1, [fla]+[dep]+[hei]+[dep]+[fla], [dep]+[ide] ,[fla]+[dep]+[hei]+[dep]+[fla],[dep]+[wid]-[ide],[col1],[thi]
LINE=1, [fla]+[dep]+[hei]+[dep]+[fla],[dep]+[wid]-[ide],[fla]+[dep]+[hei]+[dep],[dep]+[wid],[col1],[thi]
LINE=1,[fla]+[dep] ,[dep]+[wid] ,[fla]+[dep]-[fla],[dep]+[wid]+[ide], [col1],[thi]
LINE=1, [fla]+[dep]-[fla], [dep]+[wid]+[ide] ,[fla]+[dep]-[fla],[dep]+[wid]+[dep]-[ide],[col1],[thi]
LINE=1, [fla]+[dep]-[fla],[dep]+[wid]+[dep]-[ide],[fla]+[dep], [dep]+[wid]+[dep],[col1],[thi]
LINE=1, [fla]+[dep]+[hei], [dep]+[wid], [fla]+[dep]+[hei]+[fla],[dep]+[wid]+[ide],[col1],[thi]
LINE=1, [fla]+[dep]+[hei]+[fla],[dep]+[wid]+[ide] ,[fla]+[dep]+[hei]+[fla],[dep]+[wid]+[dep]-[ide],[col1],[thi] LINE=1,[fla]+[dep]+[hei]+[fla],[dep]+[wid]+[dep]-[ide],[fla]+[dep]+[hei],[dep]+[wid]+[dep] ,[col1],[thi]

LINE=1, [fla]+[dep], [dep]+[wid]+[dep]+[wid] ,[fla]+[dep]+[ide], [dep]+[wid]+[dep]+[wid]+[fla],[col1],[thi]
LINE=1,[fla]+[dep]+[ide],[dep]+[wid]+[dep]+[wid]+[fla],[fla]+[dep]+[hei]-[ide],
[dep]+[wid]+[dep]+[wid]+[fla], [col1], [thi]
LINE=1, [fla]+[dep]+[hei]-[ide], [dep]+[wid]+[dep]+[wid]+[fla],[fla]+[dep]+[hei],
[dep]+[wid]+[dep]+[wid],[col1],[thi]

```
IF=[extra]=Yes
    LINE=1,[fla]+[dep]+[hei]-[fla],[dep],[fla]+[dep]+[hei]-[fla],[dep]+[wid],[col1],[thi],DSS
    {
    BEZIER=1,
    [fla]+[dep]+[hei],[dep]+[wid]+[dep]+[wid]/2-[ide],
    [fla]+[dep]+[hei]-[ide],[dep]+[wid]+[dep]+[wid]/2-[ide],
    fla]+[dep]+[hei]-[ide],[dep]+[wid]+[dep]+[wid]/2+[ide],
    [fla]+[dep]+[hei],[dep]+[wid]+[dep]+[wid]/2+[ide],
    [col1],[thi]}
ENDIF
```


Number wheel

Size] $=3.5$
[numbers] $=4$
unit=inch
cardsize=[size], [size]
num] =frameclock(0.1,0.1,[size]-0.2,[size]-0.2,0.3,0.3,[numbers])
[green]=framelist (num1. .num15)
[yellow] =framelist (num16..num30)
[red] $=$ framelist (num31..num45)
font=arial, 12,T, \#000000
ellipse=1,<green>,\#00FF00
ellipse=1, <yellow>, \#FFFF00
ellipse=1,<red>, \#FF0000
text $=1,\left\{{ }^{\circ}-1\right\},<$ num $*>$, center, center, ${ }^{\circ} * 360 /$ [numbers] -90
ellipse $=1,0,0,100 \%, 100 \%$, \#000000, empty, 0.01
ellipse=1,48\%,48\%,4\%,4\%,\#000000, empty,0.01
save=1,"wheel col.png", 0, 0, 100\%,100\%

Tripples tiles

cardsize=2,2

'draw and save an image (an arrow)
line $=0,1,0.2,1,1, \# 000000,0.15$
line=0,1 ,0.2,1.2,0.4,\#0000FF,0.15
line $=0,1.2,0.4,0.8,0.4, \# 0000 \mathrm{FF}, 0.15$
line $=0,0.8,0.4,1,0.2, \# 0000 \mathrm{FF}, 0.15$
save $=0$, "arrow.bmp" $0,0,2,2$
create all the permutations (256) of two elements (0 and 1) taken eight times
pr [perm] 8=0|1
'takes only the tiles with three '1'
[tiles]=filter $(+$ [perm], 3$)$
[all]=1-\{(tiles) \}
'draws a dot
ellipse $=[$ all $], 0.95,0.05,0.1,0.1, \# 000000$
'draws the eight arrows
if=[tiles: 8,1]=1
image=[all],"arrow.bmp", 0, 0, 2, 2, 0, T
endif
if=[tiles:7,1]=1
image $=[$ all $]$, "arrow.bmp" $,-0.5,-0.5,3,3,45, \mathrm{~T}$ endif
if=[tiles: 6,1] =1
image $=[$ all $]$, "arrow.bmp", 0, 0, 2, 2, 90, T
endif
if=[tiles:5,1]=1
image=[all],"arrow.bmp", -0.5,-0.5,3,3,135,T
endif
if=[tiles:4,1]=1
image=[all], "arrow.bmp", 0, 0, 2, 2, 180, T
endif
if=[tiles:3,1]=1
image=[all], "arrow.bmp", -0.5,-0.5,3,3,225, T
endif
if=[tiles:2,1]=1
image=[all], "arrow.bmp", 0, 0, 2, 2, 270, T endif
if=[tiles:1,1]=1
image=[all],"arrow.bmp", -0.5,-0.5,3,3,315,T endif

Path tiles

```
oversample=2
macro=tile,(range),(key),(char),(color),(width)
    beziers=(range)
    if=[(key):1,1]=(char)
        beziers=(range),1,0,1,1,(color),(width)
    endif
    if=[(key):2,1]=(char)
            beziers=(range),2,0,2,1,(color),(width)
    endif
    if=[(key):3,1]=(char)
            beziers=(range),3,1,2,1,(color),(width)
    endif
    if=[(key):4,1]=(char)
            beziers=(range), 3, 2, 2, 2, (color), (width)
    endif
    if=[(key):5,1]=(char)
            beziers=(range),2,3,2,2, (color), (width)
        endif
        if=[(key):6,1]=(char)
            beziers=(range),1,3,1,2,(color), (width)
        endif
        if=[(key):7,1]=(char)
            beziers=(range),0,2,1,2,(color),(width)
        endif
        if=[(key):8,1]=(char)
            beziers=(range),0,1,1,1,(color),(width)
        endif
end
cardsize=3,3
```

pxxs[list] $8=a|a| b|b| c|c| d \mid d$

```
[range]=1-{(list)}
tile=[range],[list],a,#000000,0.2
tile=[range], [list],a,#FFFFFF,0.1
tile=[range], [list],b, #000000,0.2
tile=[range],[list],b,#FFFFFF,0.1
tile=[range], [list],c,#000000,0.2
tile=[range],[list],c,#FFFFFF,0.1
tile=[range], [list],d,#000000,0.2
tile=[range],[list],d,#FFFFFF,0.1
```

rectangle=[range],0,0,3,3,\#000000,EMPTY, 0.1

Combinations

```
ellipse=0,0,0,6,6,#FF0000#FFFFFF@360
save=0,a.png,0,0,6,6
ellipse=0,0,0,6,6,#00FF00#FFFFFF@360
save=0,b.png,0,0,6,6
ellipse=0,0,0,6,6,#0000FF#FFFFFF@360
save=0,c.png,0,0,6,6
ellipse=0,0,0,6,6,#FF00FF#FFFFFF@360
save=0,d.png,0,0,6,6
ellipse=0,0,0,6,6,#FFFFO0#FFFFFF@360
save=0,e.png,0,0,6,6
ellipse=0,0,0,6,6,#00FFFF#FFFFFF@360
save=0,f.png,0,0,6,6
ellipse=0,0,0,6,6,#000000#FFFFFF@360
save=0,g.png,0,0,6,6
c[comb] 3=a|b|c|d|e|f|g
[all]=1-{(comb)}
icon=[all],a,a.png
icon=[all],b,b.png
icon=[all],c,c.png
icon=[all],d,d.png
icon=[all],e,e.png
icon=[all],f,f.png
icon=[all],g,g.png
icons=[all],[comb],1.5,1.5,3,6,3,3,0,P
```


Standard 52-deck of cards

```
sequence=number
A
2
3
4
6
8
10
endsequence
sequence=face
J
Q
K
endsequence
sequence=
suit |\169\
suit_fnt|Symbol
suit_col|#FF0000
suit |\168\
suit_fnt|Symbol
suit_col|#FF0000
suit |\167\
suit_fnt|Symbol
suit_col|#000000
suit
|\170\
suit fnt|Symbol
suit col|#000000
endsēquence
<corner1>=0,0,15%,20%
<corner1 a>=0,0,15%,10%
<corner1 b>=0,10%,15%,10%
<corner2-a>=85%,0,15%,10%
<corner2_b>=85%,10%,15%,10%
<corner3_a>=0,90%,15%,10%
<corner3_b>=0,80%,15%,10%
<corner4 a>=85%,90%,15%,10%
<corner4-b>=85%,80%,15%,10%
<core>=15%, 20%,70%,60%
cards={(suit)*((number) +(face))+1}
for=a,1,{(suit)}
    for=b,1,{(number)}
        font=Arial,24,T,{suit_col?a}
        text={b+((a)-1)*((number)+(face))},{number?b},<corner1_a>
        text={b+((a)-1)*((number)+(face))},{number?b},<corner2 a>
        text ={b+((a)-1)* ((number) + (face)) }, {number?b}, <corner3-a>, center, center,180
        text ={b+((a)-1)* ((number) +(face))},{number?b}, <corner4_a>, center, center,180
        font ={suit_fnt?a}, 32,T,{suit_col?a}
        text={b+((a)-1)*((number)+(face))},{suit?a},<corner1 b>
        text={b+((a)-1)*((number)+(face))},{suit?a},<corner2 b>
        text ={b+((a)-1)* ((number) + (face)) }, {suit?a},<corner3-b>, center, center,180
        text ={b+((a)-1)*((number) + (face))},{suit?a},<corner4_b>, center, center,180
        text={b+((a)-1)*((number) +(face))},{{suit?a}Xb},<core}>, center,charwrap
    next
next
for=a,1,{(suit)}
    for=b,1,{(face)}
        font=Arial,24,T,{suit_col?a}
        text={b+((a)-1)*((number)+(face))+(number)},{face?b},<corner1_a>
        text={b+((a)-1)*((number)+(face)) +(number)},{face?b},<corner2 a>
        text ={b+((a)-1)* ((number) +(face)) + (number)},{face?b},<corner3_a>, center,center,180
        text ={b+((a)-1)* ((number) + (face) ) + (number) },{face?b},<corner4_a>, center, center,180
        font={suit_fnt?a},32,T,{suit_col?a}
        text={b+((a)-1)*((number)+(face))+(number)},{suit?a},<corner1 b>
        text={b+((a)-1)*((number)+(face))+(number)},{suit?a},<corner2 b>
        text ={b+((a)-1)* ((number) + (face)) + (number)},{suit?a},<corner3_b>, center,center,180
        text ={b+((a)-1)* ((number) + (face) ) +(number)},{suit?a},<corner4_b>,center,center,180
        font=Arial,128,T,{suit_col?a}
        text={b+((a)-1)*((number)+(face))+(number) },{face?b},<core>
    next
next
```


Hexagonal tiles

cardsize=5,5
border=none
linkmulti=number
link=data.xlsx
polygon $=, 0,0,100 \%, 100 \%, 6,30,[$ color_hex $]$
$[$ conn $]=$ frameclock $(0,0,100 \%, 100 \%, 10 \%, 10 \%, 6)$
if=(1@[lines])
line=,<conn1, pcc>, 50\%,50\%, [color_line],15\%
endif
if=(2@[lines])
line=, <conn2, pcc>, 50\%, 50\%, [color_line], 15\%
endif
if=(3@[lines])
line=, <conn3, pcc>, 50\%, 50\%, [color_line], 15\% endif
if=(4@[lines])
line=, <conn4, pcc>, 50\%, 50\%, [color_line], 15\% endif
if=(5@[lines])
line=, <conn5, pcc>, 50\%, 50\%, [color_line], 15\% endif
if=(6@[lines])
line=, <conn6, pcc>, 50\%, 50\%, [color_line], 15\% endif
polygon $=, 0,0,100 \%, 100 \%, 6,30, \# 000000$, empty, 2%
chromakey=\#FFOOOO
layer
polygon $=, 0,0,100 \%, 100 \%, 6,30, \# F F 0000$
endlayer
save=,"tile\{§\}.png", 0,6.735\%,100\%, 86.53\%, \#FF FFFF

	A	B	C	D	E	F
1	Color_hex	Lines	Color_line	Number		
2	\#00C500	1	\#000000	2		
3	\#00C500	12	\#000000	2		
4	\#00C500	13	\#000000	2		
5	\#00C500	14	\#000000	2		
6	\#00C500	123	\#000000	2		
7	\#00C500	124	\#000000	2		
8	\#00C500	125	\#000000	2		
9	\#00C500	135	\#000000	2		
10	\#00C500	1234	\#000000	2		
11	\#00C500	1235	\#000000	2		
12	\#00C500	1245	\#000000	2		
13	\#00C500	12345	\#000000	2		
14	\#00C500	123456	\#000000	2		
15						
16						

Double-sided printing

```
page=21,29.7,portrait,hv
link=data.xlsx
[range_front]=1-{(front)}
[range back]={(front)+1}-{(front)*2}
font=arial,32, #FFFFFF,#0000FF
text=[range_front], [front],0,0,100%,100%
font=arial,32, , #FFFFFF,#FF0000
text=[range_back],[back],0,0,100%,100%
duplex=[range_front], [range_back]
print=duplex
```

	A	B	C
1	front	back	
2	Front 1	Back 1	
3	Front 2	Back 2	
4	Front 3	Back 3	
5	Front 4	Back 4	
6	Front 5	Back 5	
7	Front 6	Back 6	
8			
9			

